Abstracts of Interest

Selected by: Bruce Dawson


Abstract: 1806.06339
Full Text: [ PostScript, PDF]

Title: Introduction to neutrino astronomy

Abstract: This writeup is an introduction to neutrino astronomy, addressed to astronomers and written by astroparticle physicists. While the focus is on achievements and goals in neutrino astronomy, rather than on the aspects connected to particle physics, we will introduce the particle physics concepts needed to appreciate those aspects that depend on the peculiarity of the neutrinos. The detailed layout is as follows: In Sect.~1, we introduce the neutrinos, examine their interactions, and present neutrino detectors and telescopes. In Sect.~2, we discuss solar neutrinos, that have been detected and are matter of intense (theoretical and experimental) studies. In Sect.~3, we focus on supernova neutrinos, that inform us on a very dramatic astrophysical event and can tell us a lot on the phenomenon of gravitational collapse. In Sect.~4, we discuss the highest energy neutrinos, a very recent and lively research field. In Sect.~5, we review the phenomenon of neutrino oscillations and assess its relevance for neutrino astronomy. Finally, we offer a brief overall assessment and a summary in Sect.~6. The material is selected - i.e., not all achievements are reviewed - and furthermore it is kept to an introductory level, but efforts are made to highlight current research issues. In order to help the beginner, we prefer to limit the list of references, opting whenever possible for review works and books.

Comments: 15 pages, 5 figures. Accepted for publication The European Physical Journal Plus. Based on the lecture given at the "4th Azarquiel School of Astronomy", June 2017, Porto Paolo di Capo Passero, Syracuse (Italy) this https URL


Abstract: 1806.05696
Full Text: [ PostScript, PDF]

Title: Probing Particle Physics with IceCube

Abstract: The IceCube observatory located at the South Pole is a cubic-kilometre optical Cherenkov telescope primarily designed for the detection of high-energy astrophysical neutrinos. IceCube became fully operational in 2010, after a seven-year construction phase, and reached a milestone in 2013 by the first observation of cosmic neutrinos in the TeV-PeV energy range. This observation does not only mark an important breakthrough in neutrino astronomy, but it also provides a new probe of particle physics related to neutrino production, mixing, and interaction. In this review we give an overview of the various possibilities how IceCube can address fundamental questions related to the phenomena of neutrino oscillations and interactions, the origin of dark matter, and the existence of exotic relic particles, like monopoles. We will summarize recent results and highlight future avenues.

Comments: Review article prepared for EPJC


Abstract: 1806.05493
Full Text: [ PostScript, PDF]

Title: The KASCADE Cosmic-ray Data Centre KCDC: Granting Open Access to Astroparticle Physics Research Data

Abstract: The `KASCADE Cosmic ray Data Centre' is a web portal (\url{this https URL}), where the data of the astroparticle physics experiment KASCADE-Grande are made available for the interested public. The KASCADE experiment was a large-area detector for the measurement of high-energy cosmic rays via the detection of extensive air showers. The multi-detector installations KASCADE and its extension KASCADE-Grande stopped the active data acquisition in 2013 of all its components end of 2012 after more than 20 years of data taking. In several updates since our first release in 2013 with KCDC we provide the public measured and reconstructed parameters of more than 433 million air showers. In addition, KCDC provides meta data information and documentation to enable a user outside the community of experts to perform their own data analysis. Simulation data from three different high energy interaction models have been made available as well as a compilation of measured and published spectra from various experiments. In addition, detailed educational examples shall encourage high-school students and early stage researchers to learn about astroparticle physics, cosmic radiation as well as the handling of Big Data and about the sustainable and public provision of scientific data.

Comments: 16 pages, submitted to The European Physical Journal C


Abstract: 1806.05386
Full Text: [ PostScript, PDF]

Title: Observation of inclined EeV air showers with the radio detector of the Pierre Auger Observatory

Authors: The Pierre Auger Collaboration: A. Aab, P. Abreu, M. Aglietta, I.F.M. Albuquerque, J.M. Albury, I. Allekotte, A. Almela, J. Alvarez Castillo, J. Alvarez-Muñiz, G.A. Anastasi, L. Anchordoqui, B. Andrada, S. Andringa, C. Aramo, N. Arsene, H. Asorey, P. Assis, G. Avila, A.M. Badescu, A. Balaceanu, F. Barbato, R.J. Barreira Luz, S. Baur, K.H. Becker, J.A. Bellido, C. Berat, M.E. Bertaina, X. Bertou, P.L. Biermann, J. Biteau, S.G. Blaess, A. Blanco, J. Blazek, C. Bleve, M. Boháčová, C. Bonifazi, N. Borodai, A.M. Botti, J. Brack, T. Bretz, A. Bridgeman, F.L. Briechle, P. Buchholz, A. Bueno, S. Buitink, M. Buscemi, K.S. Caballero-Mora, L. Caccianiga, L. Calcagni, A. Cancio, F. Canfora, J.M. Carceller, R. Caruso, A. Castellina, F. Catalani, G. Cataldi, L. Cazon, J.A. Chinellato,
J. Chudoba, L. Chytka, R.W. Clay, A.C. Cobos Cerutti, R. Colalillo, A. Coleman, L. Collica, M.R. Coluccia, R. Conceição, G. Consolati, F. Contreras, M.J. Cooper, S. Coutu, C.E. Covault, S. D'Amico, B. Daniel, S. Dasso, K. Daumiller, B.R. Dawson, J.A. Day, R.M. de Almeida, S.J. de Jong, G. De Mauro, J.R.T. de Mello Neto, I. De Mitri, J. de Oliveira, V. de Souza, J. Debatin, O. Deligny, N. Dhital, M.L. Díaz Castro, F. Diogo, C. Dobrigkeit, J.C. D'Olivo, Q. Dorosti, R.C. dos Anjos, M.T. Dova, A. Dundovic, J. Ebr, R. Engel, M. Erdmann, C.O. Escobar, A. Etchegoyen, H. Falcke, J. Farmer, G. Farrar, A.C. Fauth, N. Fazzini, F. Feldbusch, F. Fenu, L.P. Ferreyro, B. Fick, J.M. Figueira, A. Filipčič, M.M. Freire, T. Fujii, A. Fuster, R. Gaïor, B. García, H. Gemmeke, A. Gherghel-Lascu, P.L. Ghia, U. Giaccari, M. Giammarchi, M. Giller, D. Głas, C. Glaser, J. Glombitza, G. Golup, M. Gómez Berisso, P.F. Gómez Vitale, N. González, I. Goos, D. Góra, A. Gorgi, M. Gottowik, T.D. Grubb, F. Guarino, G.P. Guedes, E. Guido, R. Halliday, M.R. Hampel, P. Hansen, D. Harari, T.A. Harrison, V.M. Harvey, A. Haungs, T. Hebbeker, D. Heck, P. Heimann, G.C. Hill, C. Hojvat, E.M. Holt, P. Homola, J.R. Hörandel, P. Horvath, M. Hrabovský, T. Huege, J. Hulsman, A. Insolia, P.G. Isar, I. Jandt, J.A. Johnsen, M. Josebachuili, J. Jurysek, A. Kääpä, O. Kambeitz, K.H. Kampert, B. Keilhauer, N. Kemmerich, J. Kemp, H.O. Klages, M. Kleifges, J. Kleinfeller, R. Krause, D. Kuempel, G. Kukec Mezek, N. Kunka, A. Kuotb Awad, B.L. Lago, D. LaHurd, R.G. Lang, R. Legumina, M.A. Leigui de Oliveira, V. Lenok, A. Letessier-Selvon, I. Lhenry-Yvon, D. Lo Presti, L. Lopes, R. López, A. López Casado, R. Lorek, Q. Luce, A. Lucero, M. Malacari, M. Mallamaci, D. Mandat, P. Mantsch, A.G. Mariazzi, I.C. Mariş, G. Marsella, D. Martello, H. Martinez, O. Martínez Bravo, H.J. Mathes, S. Mathys, J. Matthews, G. Matthiae, E. Mayotte, P.O. Mazur, C. Medina, G. Medina-Tanco, D. Melo, A. Menshikov, K.-D. Merenda, S. Michal, M.I. Micheletti, L. Middendorf, L. Miramonti, B. Mitrica, D. Mockler, S. Mollerach, F. Montanet, C. Morello, G. Morlino, M. Mostafá, A.L. Müller, M.A. Muller, S. Müller, R. Mussa, L. Nellen, P.H. Nguyen, M. Niculescu-Oglinzanu, M. Niechciol, L. Niemietz, D. Nitz, D. Nosek, V. Novotny, L. Nožka, A Nucita, L.A. Núñez, F. Oikonomou, A. Olinto, M. Palatka, J. Pallotta, P. Papenbreer, G. Parente, A. Parra, T. Paul, M. Pech, F. Pedreira, J. Pękala, R. Pelayo, J. Peña-Rodriguez, L.A.S. Pereira, M. Perlin, L. Perrone, C. Peters, S. Petrera, J. Phuntsok, T. Pierog, M. Pimenta, V. Pirronello, M. Platino, J. Poh, B. Pont, C. Porowski, R.R. Prado, P. Privitera, M. Prouza, A. Puyleart, E.J. Quel, S. Querchfeld, S. Quinn, R. Ramos-Pollan, J. Rautenberg, D. Ravignani, M. Reininghaus, J. Ridky, F. Riehn, M. Risse, P. Ristori, V. Rizi, W. Rodrigues de Carvalho, G. Rodriguez Fernandez, J. Rodriguez Rojo, M.J. Roncoroni, M. Roth, E. Roulet, A.C. Rovero, P. Ruehl, S.J. Saffi, A. Saftoiu, F. Salamida, H. Salazar, A. Saleh, G. Salina, F. Sánchez, P. Sanchez-Lucas, E.M. Santos, E. Santos, F. Sarazin, R. Sarmento, C. Sarmiento-Cano, R. Sato, P. Savina, M. Schauer, V. Scherini, H. Schieler, M. Schimassek, M. Schimp, D. Schmidt, O. Scholten, P. Schovánek, F.G. Schröder, S. Schröder, A. Schulz, J. Schumacher, S.J. Sciutto, A. Segreto, R.C. Shellard, G. Sigl, G. Silli, O. Sima, R. Šmída, G.R. Snow, P. Sommers, J.F. Soriano, J. Souchard, R. Squartini, D. Stanca, S. Stanič, J. Stasielak, P. Stassi, M. Stolpovskiy, F. Strafella, A. Streich, F. Suarez, M. Suárez-Durán, T. Sudholz, T. Suomijärvi, A.D. Supanitsky, J. Šupík, J. Swain, Z. Szadkowski, A. Taboada, O.A. Taborda, C. Timmermans, C.J. Todero Peixoto, B. Tomé, G. Torralba Elipe, P. Travnicek, M. Trini, M. Tueros, R. Ulrich, M. Unger, M. Urban, J.F. Valdés Galicia, I. Valiño, L. Valore, P. van Bodegom, A.M. van den Berg, A. van Vliet, E. Varela, B. Vargas Cárdenas, R.A. Vázquez, D. Veberič, C. Ventura, I.D. Vergara Quispe, V. Verzi, J. Vicha, L. Villaseñor, S. Vorobiov, H. Wahlberg, O. Wainberg, D. Walz, A.A. Watson, M. Weber, A. Weindl, M. Wiedeński, L. Wiencke, H. Wilczyński, M. Wirtz, D. Wittkowski, B. Wundheiler, L. Yang, A. Yushkov, E. Zas, D. Zavrtanik, M. Zavrtanik, L. Zehrer, A. Zepeda, B. Zimmermann, M. Ziolkowski, Z. Zong, F. Zuccarello
et al. (336 additional authors not shown)
Abstract: With the Auger Engineering Radio Array (AERA) of the Pierre Auger Observatory, we have observed the radio emission from 561 extensive air showers with zenith angles between 60$^\circ$ and 84$^\circ$. In contrast to air showers with more vertical incidence, these inclined air showers illuminate large ground areas of several km$^2$ with radio signals detectable in the 30 to 80 MHz band. A comparison of the measured radio-signal amplitudes with Monte Carlo simulations of a subset of 50 events for which we reconstruct the energy using the Auger surface detector shows agreement within the uncertainties of the current analysis. As expected for forward-beamed radio emission undergoing no significant absorption or scattering in the atmosphere, the area illuminated by radio signals grows with the zenith angle of the air shower. Inclined air showers with EeV energies are thus measurable with sparse radio-antenna arrays with grid sizes of a km or more. This is particularly attractive as radio detection provides direct access to the energy in the electromagnetic cascade of an air shower, which in case of inclined air showers is not accessible by arrays of particle detectors on the ground.

Comments: 14 pages, submitted to JCAP


Abstract: 1806.05367
Full Text: [ PostScript, PDF]

Title: Detection of persistent VHE gamma-ray emission from PKS 1510-089 by the MAGIC telescopes during low states between 2012 and 2017

Authors: MAGIC Collaboration: V. A. Acciari (1), S. Ansoldi (2,21), L. A. Antonelli (3), A. Arbet Engels (4), C. Arcaro (5), D. Baack (6), A. Babić (7), B. Banerjee (8), P. Bangale (9), U. Barres de Almeida (9,10), J. A. Barrio (11), J. Becerra González (1), W. Bednarek (12), E. Bernardini (5,13,24), A. Berti (2,25), J. Besenrieder (9), W. Bhattacharyya (13), C. Bigongiari (3), A. Biland (4), O. Blanch (14), G. Bonnoli (15), R. Carosi (16), G. Ceribella (9), A. Chatterjee (8), S. M. Colak (14), P. Colin (9), E. Colombo (1), J. L. Contreras (11), J. Cortina (14), S. Covino (3), P. Cumani (14), V. D'Elia (3), P. Da Vela (17), F. Dazzi (3), A. De Angelis (5), B. De Lotto (2), M. Delfino (14,26), J. Delgado (14,26), F. Di Pierro (17), A. Domínguez (11), D. Dominis Prester (7), D. Dorner (18),
M. Doro (5), S. Einecke (6), D. Elsaesser (6), V. Fallah Ramazani (19), A. Fattorini (6), A. Fernández-Barral (5,14), G. Ferrara (3), D. Fidalgo (11), L. Foffano (5), M. V. Fonseca (11), L. Font (20), C. Fruck (9), S. Gallozzi (3), R. J. García López (1), M. Garczarczyk (13), M. Gaug (20), P. Giammaria (3), N. Godinović (7), D. Guberman (14), D. Hadasch (21), A. Hahn (9), T. Hassan (14), J. Herrera (1), J. Hoang (11), D. Hrupec (7), S. Inoue (21), K. Ishio (9), Y. Iwamura (21), H. Kubo (21), J. Kushida (21), D. Kuveždić (7), A. Lamastra (3), D. Lelas (7), F. Leone (3), E. Lindfors (19), S. Lombardi (3), F. Longo (2,25), M. López (11), A. López-Oramas (1), C. Maggio (20), P. Majumdar (8), M. Makariev (22), G. Maneva (22), M. Manganaro (1), K. Mannheim (18), L. Maraschi (3), M. Mariotti (5), M. Martínez (14), S. Masuda (21), D. Mazin (9,21), M. Minev (22), J. M. Miranda (15), R. Mirzoyan (9), E. Molina (23), A. Moralejo (14), V. Moreno (20), E. Moretti (14), V. Neustroev (19), A. Niedzwiecki (12), M. Nievas Rosillo (11), C. Nigro (13), K. Nilsson (19), D. Ninci (14), K. Nishijima (21), K. Noda (21), L. Nogués (14), S. Paiano (5), J. Palacio (14), D. Paneque (9), R. Paoletti (15), J. M. Paredes (23), G. Pedaletti (13), P. Peñil (11), M. Peresano (2), M. Persic (2,27), P. G. Prada Moroni (16), E. Prandini (5), I. Puljak (7), J. R. Garcia (9), W. Rhode (6), M. Ribó (23), J. Rico (14), C. Righi (3), A. Rugliancich (15), L. Saha (11), T. Saito (21), K. Satalecka (13), T. Schweizer (9), J. Sitarek (12), I. Šnidarić (7), D. Sobczynska (12), A. Somero (1), A. Stamerra (3), M. Strzys (9), T. Surić (7), F. Tavecchio (3), P. Temnikov (22), T. Terzić (7), M. Teshima (9,21), N. Torres-Albà (23), S. Tsujimoto (21), G. Vanzo (1), M. Vazquez Acosta (1), I. Vovk (9), J. E. Ward (14), M. Will (9), D. Zarić (7), C. M. Raiteri (27), A. Sandrinelli (28,29), T. Hovatta (31), S. Kiehlmann (30, W. Max-Moerbeck, M. Tornikoski, A. Lähteenmäki, J. Tammi, V. Ramakrishnan, C. Thum, I. Agudo, S. N. Molina, J. L. Gómez, A. Fuentes, C. Casadio, E. Traianou, I. Myserlis, and J.-Y. Kim ((1) Instituto de Astrofisica de Canarias, La Laguna (Tenerife), Spain, (2) Università di Udine and INFN, sezione di Trieste, Italy, Udine, Italy, (3) INAF - National Institute for Astrophysics, Roma, Italy, (4) ETH Zurich, Institute for Particle Physics, Zurich, Switzerland, (5) Dipartimento di Fisica e Astronomia dell' Università and Sezione INFN, Padova, Italy, Padova, Italy, (6) Technische Universität Dortmund, Dortmund, Germany, (7) Croatian MAGIC Consortium: Rudjer Boskovic Institute, University of Rijeka, University of Split - FESB, University of Zagreb-FER, University of Osijek, Split, Croatia, (8) Saha Institute of Nuclear Physics, HBNI, Kolkata, India, (9) Max-Planck-Institut für Physik, München, Germany, (10) now at Centro Brasileiro de Pesquisas Físicas (CBPF), Rio de Janeiro, Brasil, (11) Unidad de Partículas y Cosmología (UPARCOS), Universidad Complutense, E-28040 Madrid, Spain, Madrid, Spain, (12) Division of Astrophysics, University of Lodz, Lodz, Poland, (13) Deutsches Elektronen-Synchrotron (DESY) Zeuthen, Zeuthen, Germany, (14) Institut de Física d'Altes Energies (IFAE), The Barcelona Institute of Science and Technology (BIST), E-08193 Bellaterra (Barcelona), Spain, Bellaterra (Barcelona), Spain, (15) Dipartimento SFTA, Sezione di Fisica, Università di Siena and INFN sez. di Pisa, Siena, Italy, (16) Universita di Pisa, and INFN Pisa, Pisa, Italy, (17) INFN Consortium, Rome, Italy, (18) Institut für Theoretische Physik und Astrophysik - Fakultät für Physik und Astronomie - Universität Würzburg, Würzburg, Germany, (19) Finnish MAGIC Consortium: Tuorla Observatory and Finnish Centre of Astronomy with ESO (FINCA), University of Turku, Vaisalantie 20, FI-21500 Piikkiö, Astronomy Division, University of Oulu, FIN-90014 University of Oulu, Finland, Piikkiö, Finland, (20) Universitat Autònoma de Barcelona, Barcelona, Spain, (21) Japanese MAGIC Consortium: ICRR, The University of Tokyo, 277-8582 Chiba, Japan, Department of Physics, Kyoto University, 606-8502 Kyoto, Japan, Tokai University, 259-1292 Kanagawa, Japan, RIKEN, 351-0198 Saitama, Japan (22) Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria, (23) Universitat de Barcelona, Barcelona, Spain, (24) Humboldt University of Berlin, Institut für Physik D-12489 Berlin Germany, (25) also at Dipartimento di Fisica, Università di Trieste, I-34127 Trieste, Italy, (26) also at Port d'Informació Científica (PIC) E-08193 Bellaterra (Barcelona) Spain, (27) also at INAF-Trieste and Dept. of Physics \& Astronomy, University of Bologna)
et al. (111 additional authors not shown)
Abstract: Context. PKS 1510-089 is a flat spectrum radio quasar strongly variable in the optical and GeV range. So far, very-high-energy (VHE) emission has been observed from this source during either long high states of optical and GeV activity or during short flares. Aims. We search for low-state VHE gamma-ray emission from PKS 1510-089. We aim to characterize and model the source in a broad-band context, which would provide a baseline over which high states and flares could be better understood. Methods. PKS 1510-089 has been monitored by the MAGIC telescopes since 2012. We use daily binned Fermi-LAT flux measurements of PKS 1510-089 to characterize the GeV emission and select the observation periods of MAGIC during low state of activity. For the selected times we compute the average radio, IR, optical, UV, X-ray and gamma-ray emission to construct a low-state spectral energy distribution of the source. The broadband emission is modelled within an External Compton scenario with a stationary emission region through which plasma and magnetic field are flowing. Results. The MAGIC telescopes collected 75 hrs of data during times when the Fermi-LAT flux measured above 1 GeV was below 3x10 -8 cm -2 s -1 , which is the threshold adopted for the definition of a low gamma-ray activity state. The data show a strongly significant (9.5{\sigma}) VHE gamma-ray emission at the level of (4.27 +- 0.61 stat ) x 10 -12 cm -2 s -1 above 150 GeV, a factor 80 smaller than the highest flare observed so far from this object. Despite the lower flux, the spectral shape is consistent with earlier detections in the VHE band. The broad-band emission is compatible with the External Compton scenario assuming a large emission region located beyond the broad line region.

Comments: 11 pages, 6 figures, submitted to A&A


Abstract: 1806.05195
Full Text: [ PostScript, PDF]

Title: Black holes, gravitational waves and fundamental physics: a roadmap

Authors: Leor Barack, Vitor Cardoso, Samaya Nissanke, Thomas P. Sotiriou, Abbas Askar, Chris Belczynski, Gianfranco Bertone, Edi Bon, Diego Blas, Richard Brito, Tomasz Bulik, Clare Burrage, Christian T. Byrnes, Chiara Caprini, Masha Chernyakova, Piotr Chrusciel, Monica Colpi, Valeria Ferrari, Daniele Gaggero, Jonathan Gair, Juan Garcia-Bellido, S. F. Hassan, Lavinia Heisenberg, Martin Hendry, Ik Siong Heng, Carlos Herdeiro, Tanja Hinderer, Assaf Horesh, Bradley J. Kavanagh, Bence Kocsis, Michael Kramer, Alexandre Le Tiec, Chiara Mingarelli, Germano Nardini, Gijs Nelemans, Carlos Palenzuela, Paolo Pani, Albino Perego, Edward K. Porter, Elena M. Rossi, Patricia Schmidt, Alberto Sesana, Ulrich Sperhake, Antonio Stamerra, Nicola Tamanini, Thomas M. Tauris, L. Arturo Urena-Lopez, Frederic Vincent, Marta Volonteri,
Barry Wardell, Norbert Wex, Kent Yagi, Tiziano Abdelsalhin, Miguel Angel Aloy, Pau Amaro-Seoane, Lorenzo Annulli, Manuel Arca-Sedda, Ibrahima Bah, Enrico Barausse, Elvis Barakovic, Robert Benkel, Charles L. Bennett, Laura Bernard, Sebastiano Bernuzzi, Christopher P. L. Berry, Emanuele Berti, Miguel Bezares, Jose Juan Blanco-Pillado, Jose Luis Blazquez-Salcedo, Matteo Bonetti, Mateja Boskovic Zeljka Bosnjak, Katja Bricman, Bernd Bruegmann, Pedro R. Capelo, Sante Carloni, Pablo Cerda-Duran, Christos Charmousis, Sylvain Chaty, Aurora Clerici, Andrew Coates, Marta Colleoni, Lucas G. Collodel, Geoffrey Compere, William Cook, Isabel Cordero-Carrion, Miguel Correia, Alvaro de la Cruz-Dombriz, Viktor G. Czinner, Kyriakos Destounis, Kostas Dialektopoulos, Daniela Doneva, Massimo Dotti, Amelia Drew, Christopher Eckner, James Edholm, Roberto Emparan, Recai Erdem, Miguel Ferreira, Pedro G. Ferreira, Andrew Finch, Jose A. Font, Nicola Franchini, Kwinten Fransen, Dmitry Gal'tsov, Apratim Ganguly, Davide Gerosa, Kostas Glampedakis, Andreja Gomboc, Ariel Goobar, Leonardo Gualtieri, Eduardo Guendelman, Francesco Haardt, Troels Harmark, Filip Hejda, Thomas Hertog, Seth Hopper, Sascha Husa, Nada Ihanec, Taishi Ikeda, Amruta Jaodand, Philippe Jetzer Xisco Jimenez-Forteza, Marc Kamionkowski, David E. Kaplan, Stelios Kazantzidis, Masashi Kimura, Shio Kobayashi, Kostas Kokkotas, Julian Krolik, Jutta Kunz, Claus Lammerzahl, Paul Lasky, Jose P. S. Lemos, Jackson Levi Said, Stefano Liberati, Jorge Lopes, Raimon Luna, Yin-Zhe Ma, Elisa Maggio, Marina Martinez Montero, Andrea Maselli, Lucio Mayer, Anupam Mazumdar, Christopher Messenger, Brice Menard, Masato Minamitsuji, Christopher J. Moore, David Mota, Sourabh Nampalliwar, Andrea Nerozzi, David Nichols, Emil Nissimov, Martin Obergaulinger, Roberto Oliveri, George Pappas, Vedad Pasic, Hiranya Peiris, Tanja Petrushevska, Denis Pollney, Geraint Pratten, Nemanja Rakic, Istvan Racz, Fethi M. Ramazanouglu, Antoni Ramos-Buades, Guilherme Raposo, Marek Rogatko, Dorota Rosinska, Stephan Rosswog, Ester Ruiz Morales, Mairi Sakellariadou, Nicolas Sanchis-Gual, Om Sharan Salafia, Alicia Sintes, Majda Smole, Carlos Sopuerta, Rafael Souza-Lima, Marko Stalevski, Leo C. Stein, Nikolaos Stergioulas, Chris Stevens, Tomas Tamfal, Alejandro Torres-Forne, Sergey Tsygankov, Kivanc Unluturk, Rosa Valiante, Jose Velhinho, Yosef Verbin, Bert Vercnocke, Daniele Vernieri, Rodrigo Vicente, Vincenzo Vitagliano, Amanda Weltman, Bernard Whiting, Andrew Williamson, Helvi Witek, Aneta Wojnar, Kadri Yakut, Stoycho Yazadjiev, Gabrijela Zaharijas, Miguel Zilhao
et al. (150 additional authors not shown)
Abstract: The grand challenges of contemporary fundamental physics---dark matter, dark energy, vacuum energy, inflation and early universe cosmology, singularities and the hierarchy problem---all involve gravity as a key component. And of all gravitational phenomena, black holes stand out in their elegant simplicity, while harbouring some of the most remarkable predictions of General Relativity: event horizons, singularities and ergoregions. The hitherto invisible landscape of the gravitational Universe is being unveiled before our eyes: the historical direct detection of gravitational waves by the LIGO-Virgo collaboration marks the dawn of a new era of scientific exploration. Gravitational-wave astronomy will allow us to test models of black hole formation, growth and evolution, as well as models of gravitational-wave generation and propagation. It will provide evidence for event horizons and ergoregions, test the theory of General Relativity itself, and may reveal the existence of new fundamental fields. The synthesis of these results has the potential to radically reshape our understanding of the cosmos and of the laws of Nature. The purpose of this work is to present a concise, yet comprehensive overview of the state of the art in the relevant fields of research, summarize important open problems, and lay out a roadmap for future progress.

Comments: White Paper for the COST action "Gravitational Waves, Black Holes, and Fundamental Physics", 216 pages, 11 figures


Abstract: 1806.04790
Full Text: [ PostScript, PDF]

Title: Relevance of the fluorescence radiation in VHE gamma ray observations with the Cherenkov technique

Abstract: Atmospheric fluorescence is usually neglected in the reconstruction of the signals registered by Cherenkov telescopes, both IACTs and wide-angle detector arrays. In this paper we quantify the fluorescence contribution to the total light recorded in typical observational configurations. To this end we have implemented the production and tracking of fluorescence light in the CORSIKA code. Both the Cherenkov and fluorescence light distributions on ground (2200 m a.s.l.) have been simulated for gamma-ray showers in a wide energy range (0.1 - 1000 TeV). The relative fluorescence contribution has been evaluated as a function of the shower energy and zenith angle. Our results indicate that at about 1000 m from the shower impact point more than a 5% of the IACT signals come from atmospheric fluorescence. The contamination at these core distances can be much larger for arrays of wide-angle detectors working in the PeV range.

Comments: 10 pages, 11 figures, submitted to Astroparticle Physics


Abstract: 1806.04769
Full Text: [ PostScript, PDF]

Title: Interpretation of the diffuse astrophysical neutrino flux in terms of the blazar sequence

Abstract: We study if the diffuse astrophysical neutrino flux can come from blazar jets -- a subclass of Active Galactic Nuclei (AGNs) -- while at the same time respecting the blazar stacking limit based on source catalogs. We compute the neutrino flux from resolved and unresolved sources using an averaged, empirical relationship between electromagnetic spectrum and luminosity, known as the {\em blazar sequence}, for two populations of blazars (BL Lacs and FSRQs). Using a source model with realistic neutrino flux computations, we demonstrate that blazars can indeed power the diffuse neutrino flux and obey the stacking limit at the same time, and we derive the conditions for the baryonic loading (proton versus $\gamma$-ray luminosity) evolving over the blazar sequence. Under the hypothesis that blazars power the diffuse astrophysical neutrino flux, we find that the dominant contribution of the diffuse flux up to PeV energies must come from unresolved BL Lacs with baryonic loadings larger than about $10^4$. A small contribution of resolved high-luminosity FSRQs with baryonic loadings of order $10^2$ can contribute at the highest energies, which is, however, directly tested by the stacking limit. Our results are roughly consistent with the expectations for AGN energetics and have implications for radiation models for AGNs.

Comments: 11 pages + 4 pages of Appendix


Abstract: 1806.04194
Full Text: [ PostScript, PDF]

Title: Energetics of High-Energy Cosmic Radiations

Abstract: The luminosity densities of high-energy cosmic radiations are studied to find connections among the various components, including high-energy neutrinos measured with IceCube and gamma rays with the Fermi satellite. Matching the cosmic-ray energy generation rate density in a GeV-TeV range estimated for Milky Way with the ultrahigh-energy component requires a power-law index of the spectrum, $s_{\rm cr}\approx2.1-2.2$, somewhat harder than $s_{\rm cr}\approx2.3-2.4$ derived from the AMS-02 experiment, pointing towards either reacceleration of galactic cosmic rays or presence of extragalactic sources with $s_{\rm cr}\sim2$. The soft GeV-TeV cosmic-ray spectrum extrapolated to higher energies can be compatible with PeV cosmic rays inferred from neutrino measurements, but overshoots the CR luminosity density to explain GeV-TeV gamma rays. The extrapolation from ultrahigh energies with a hard spectrum, on the other hand, can be consistent with both neutrinos and gamma-rays. We discuss possible cosmic-ray sources that can be added.

Comments: 12 pages, 3 figures, 2 tables


Abstract: 1806.04144
Full Text: [ PostScript, PDF]

Title: HESS J1943+213: An Extreme Blazar Shining Through The Galactic Plane

Abstract: HESS J1943+213 is a very-high-energy (VHE; $>$100 GeV) $\gamma$-ray source in the direction of the Galactic Plane. Studies exploring the classification of the source are converging towards its identification as an extreme synchrotron BL Lac object. Here we present 38 hours of VERITAS observations of HESS J1943+213 taken over two years. The source is detected with $\sim$20 standard deviations significance, showing a remarkably stable flux and spectrum in VHE $\gamma$-rays. Multi-frequency very-long-baseline array (VLBA) observations of the source confirm the extended, jet-like structure previously found in the 1.6 GHz band with European VLBI Network and detect this component in the 4.6 GHz and the 7.3 GHz bands. The radio spectral indices of the core and the jet and the level of polarization derived from the VLBA observations are in a range typical for blazars. Data from VERITAS, $Fermi$-LAT, $Swift$-XRT, FLWO 48$''$ telescope, and archival infrared and hard X-ray observations are used to construct and model the spectral energy distribution (SED) of the source with a synchrotron-self-Compton model. The well-measured $\gamma$-ray peak of the SED with VERITAS and $Fermi$-LAT provides constraining upper limits on the source redshift. Possible contribution of secondary $\gamma$-rays from ultra-high-energy cosmic ray-initiated electromagnetic cascades to the $\gamma$-ray emission is explored, finding that only a segment of the VHE spectrum can be accommodated with this process. A variability search is performed across X-ray and $\gamma$-ray bands. No statistically significant flux or spectral variability is detected.

Comments: Accepted for publication in The Astrophysical Journal


Abstract: 1806.04293
Full Text: [ PostScript, PDF]

Title: Shielding of a direct detection experiment and implications for the DAMA annual modulation signal

Authors: R. Foot
Abstract: Previous work has argued that, in the framework of plasma dark matter models, the DAMA annual modulation signal can be consistently explained with electron recoils. In the specific case of mirror dark matter, that explanation requires an effective low velocity cutoff, $v_c \gtrsim 30,000$ km/s, for the halo mirror electron distribution at the detector. We show here that this cutoff can result from shielding of the detector from the halo wind due to Earth-bound dark matter. We also show that shielding effects can reconcile the kinetic mixing parameter value inferred from direct detection experiments with the value favoured from small scale structure considerations, $\epsilon \approx 2 \times 10^{-10}$.

Comments: 10 pages


Abstract: 1806.04140
Full Text: [ PostScript, PDF]

Title: The hadronic interaction model Sibyll-2.3c and inclusive lepton fluxes

Abstract: Muons and neutrinos from cosmic ray interactions in the atmosphere originate from decays of mesons in air-showers. Sibyll-2.3c aims to give a precise description of hadronic interactions in the relevant phase space for conventional and prompt leptons in light of new accelerator data, including that from the LHC. Sibyll is designed primarily as an event generator for use in simulation of extensive air showers. Because it has been tuned for forward physics as well as the central region, it can also be used to calculate inclusive fluxes. The purpose of this paper is to describe the use of Sibyll-2.3c for calculation of fluxes of atmospheric leptons.



This page created: Tue Jun 19 12:12:52 CST 2018 by bdawson

For a printable title listing click here
For details on generating this page see the instructions. If there are problems with this page (and I expect there will be from time to time) contact Jose.

For previous lists of abstracts of interest click Previous abstracts of interest