Properties of G2 gauge theories

Axel Maas

26th of June 2012
30th International Symposium on Lattice Field Theory
Cairns
Australia
Overview

• Why G2?
Overview

• Why G2?

• G2 Yang-Mills theory
Overview

- Why G2?
- G2 Yang-Mills theory
 - Phase diagram [Danzer, Gattringer, Maas JHEP'09]
 - Topological properties [Ilgenfritz, Maas unpublished]
Overview

• Why G2?

• G2 Yang-Mills theory
 • Phase diagram [Danzer, Gattringer, Maas JHEP'09]
 • Topological properties [Ilgenfritz, Maas unpublished]
 • Running coupling and gluonic correlation functions [Olejnik, Maas JHEP'08, Maas MPLA'05, JHEP'11]
Overview

- Why G2?
- G2 Yang-Mills theory
 - Phase diagram [Danzer, Gattringer, Maas JHEP'09]
 - Topological properties [Ilgenfritz, Maas unpublished]
 - Running coupling and gluonic correlation functions [Olejnik, Maas JHEP'08, Maas MPLA'05, JHEP'11]
- G2 QCD
Overview

• Why G2?

• G2 Yang-Mills theory
 • Phase diagram [Danzer, Gattringer, Maas JHEP'09]
 • Topological properties [Ilgenfritz, Maas unpublished]
 • Running coupling and gluonic correlation functions [Olejnik, Maas JHEP'08, Maas MPLA'05, JHEP'11]

• G2 QCD
 • Exploring the full phase diagram [Maas, von Smekal, Wellegehausen, Wipf '12: 1203.5653]
Overview

• Why G2?

• G2 Yang-Mills theory
 • Phase diagram [Danzer, Gattringer, Maas JHEP'09]
 • Topological properties [Ilgenfritz, Maas unpublished]
 • Running coupling and gluonic correlation functions [Olejnik, Maas JHEP'08, Maas MPLA'05, JHEP'11]

• G2 QCD
 • Exploring the full phase diagram [Maas, von Smekal, Wellegehausen, Wipf '12: 1203.5653]
 • Details: Next talk by Björn Wellegehausen

• Summary
QCD as a gauge theory

- QCD is a gauge theory
QCD as a gauge theory

• QCD is a gauge theory

\[L = -\frac{1}{4} F_{\mu \nu}^a F^{\mu \nu}_a \]

\[F_{\mu \nu}^a = \partial_\mu A_{\nu}^a - \partial_\nu A_{\mu}^a \]

• Gluons \(A_{\mu}^a \)
QCD as a gauge theory

- QCD is a gauge theory

\[L = -\frac{1}{4} F_{\mu\nu}^a F^{\mu\nu}_a \]

\[F_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + g f_{bc}^a A_\mu^b A_\nu^c \]

- Gluons \(A^a_\mu \)

- A coupling \(g \)

- Numbers \(f^{abc} \) determined by the gauge group
QCD as a gauge theory

- QCD is a gauge theory

\[L = -\frac{1}{4} F_{\mu \nu}^a F_{\mu \nu}^a + \overline{\Psi}_i (i D_{\mu}^{ij} \gamma^\mu - m) \Psi_j \]

- Gluons \(A^a_\mu \)
- Quarks \(\Psi_i \)
- A coupling \(g \)
- Numbers \(f^{abc} \) determined by the gauge group
QCD as a gauge theory

• QCD is a gauge theory

\[L = -\frac{1}{4} F^a_{\mu\nu} F^{\mu\nu}_a + \bar{\Psi}_i (iD^i_\mu \gamma^\mu - m) \Psi_j \]

\[F^a_{\mu\nu} = \partial_\mu A^a_\nu - \partial_\nu A^a_\mu + g f^{a}_{\ b c} A^b_\mu A^c_\nu \]

\[D^i_\mu = \delta^i_\mu \partial_\mu - ig A^a_\mu t^i_a \]

• Gluons \(A^a_\mu \)

• Quarks \(\Psi_i \)

• A coupling \(g \)

• Numbers \(f^{abc} \) and \(t^{ij}_a \) determined by the gauge group
QCD as a gauge theory

- QCD is a gauge theory
 \[L = -\frac{1}{4} F^a_{\mu \nu} F^{\mu \nu}_a + \overline{\Psi}_i \left(i D^i_{\mu} \gamma^\mu - m \right) \Psi_j \]
 \[F^a_{\mu \nu} = \partial^\mu A^a_\nu - \partial^\nu A^a_\mu + gf^{a}_{bc} A^b_\mu A^c_\nu \]
 \[D^i_{\mu} = \delta^i_{\mu} \partial^\mu - ig A^a_\mu t^i_a \]
- Gluons \(A^a_\mu \)
- Quarks \(\Psi_i \)
- A coupling \(g \)
- Numbers \(f^{abc} \) and \(t^i_a \) determined by the gauge group
- QCD: SU(3)
QCD as a gauge theory

- QCD is a gauge theory
 \[L = -\frac{1}{4} F_{\mu \nu}^a F_a^{\mu \nu} + \bar{\Psi}_i (i D_{\mu}^{ij} \gamma^\mu - m) \Psi_j \]

 \[F_{\mu \nu}^a = \partial_\mu A_{\nu}^a - \partial_\nu A_{\mu}^a + g f_{bc}^a A_{\mu}^b A_{\nu}^c \]

 \[D_{\mu}^{ij} = \delta_{ij} \partial_\mu - ig A_{\mu}^a t_{ij} \]

- Gluons \(A_{\mu}^a \)
- Quarks \(\Psi_i \)
- A coupling \(g \)
- Numbers \(f_{abc}^a \) and \(t_{ij}^a \) determined by the gauge group

- QCD: SU(3)
- Here: G2
Why G2?

- Conceptual
Why G2?

- Conceptual – Quenched QCD
Why G2?

- Conceptual – Quenched QCD
 - SU(3): Center is assumed to be important
Why G2?

- Conceptual – Quenched QCD
 - SU(3): Center is assumed to be important
 - What happens with a trivial center?
Why G2?

• Conceptual – Quenched QCD
 • SU(3): Center is assumed to be important
 • What happens with a trivial center?
 • Simplest case: G2 instead of SU(3) [Holland et al. NPA 03]
Why G2?

- Conceptual – Quenched QCD
 - SU(3): Center is assumed to be important
 - What happens with a trivial center?
 - Simplest case: G2 instead of SU(3) [Holland et al. NPA 03]
- Resembles this (quenched) QCD?
Why G2?

- Conceptual – Quenched QCD
 - SU(3): Center is assumed to be important
 - What happens with a trivial center?
 - Simplest case: G2 instead of SU(3) [Holland et al. NPA 03]
- Resembles this (quenched) QCD? - Yes
Why G2?

- Conceptual – Quenched QCD
 - SU(3): Center is assumed to be important
 - What happens with a trivial center?
 - Simplest case: G2 instead of SU(3) [Holland et al. NPA 03]
- Resembles this (quenched) QCD? - Yes
- Practical
Why G2?

• Conceptual – Quenched QCD
 • SU(3): Center is assumed to be important
 • What happens with a trivial center?
 • Simplest case: G2 instead of SU(3) [Holland et al. NPA 03]

• Resembles this (quenched) QCD? - Yes

• Practical
 • Fundamental representation real
 • No sign problem
Why G2?

- Conceptual – Quenched QCD
 - SU(3): Center is assumed to be important
 - What happens with a trivial center?
 - Simplest case: G2 instead of SU(3) [Holland et al. NPA 03]
- Resembles this (quenched) QCD? - Yes
- Practical
 - Fundamental representation real
 - No sign problem
 - Full phase diagram accessible
Why G2?

- Conceptual – Quenched QCD
 - SU(3): Center is assumed to be important
 - What happens with a trivial center?
 - Simplest case: G2 instead of SU(3) [Holland et al. NPA 03]
- Resembles this (quenched) QCD? - Yes
- Practical
 - Fundamental representation real
 - No sign problem
 - Full phase diagram accessible
 - Test of methods and models
Why G2?

● Conceptual – Quenched QCD
 ● SU(3): Center is assumed to be important
 ● What happens with a trivial center?
 ● Simplest case: G2 instead of SU(3) [Holland et al. NPA 03]

● Resembles this (quenched) QCD? - Yes

● Practical
 ● Fundamental representation real
 ● No sign problem
 ● Full phase diagram accessible
 ● Test of methods and models
 ● Qualitative insights
G2 facts sheet

- G2 is an exceptional Lie group
 - Rank 2 (like SU(3))
 - Subgroup of SO(7)
 - Can be formulate as a product of SU(3) and the 6-sphere
 - All representations are equivalent to real representations
 - Fundamental representation 7 dimensional
 - Adjoint representation 14 dimensional
G2 quenched QCD

• 14 gluons
G2 quenched QCD

- 14 gluons
- Asymptotically free, infrared strongly interacting
G2 quenched QCD

- 14 gluons
- Asymptotically free, infrared strongly interacting
- Asymptotic string tension zero
 - Like full QCD
G2 quenched QCD

- 14 gluons
- Asymptotically free, infrared strongly interacting
- Asymptotic string tension zero
 - Like full QCD
- Intermediate distance static quark-antiquark potential similar to SU(3) Yang-Mills theory
 - Used to set the scale

[Wellegehausen et al. PRD 11, Liptak et al. PRD 08, Greensite et al. PRD 06]
G2 quenched QCD

- 14 gluons
- Asymptotically free, infrared strongly interacting
- Asymptotic string tension zero
 - Like full QCD
- Intermediate distance static quark-antiquark potential similar to SU(3) Yang-Mills theory
 - Used to set the scale
- Qualitatively similar glueball spectrum
 - Similar gluon-gluon potential [Wellegehausen et al. PRD 11]
What about confinement?
What about confinement?

• Asymptotic states still only glueballs
What about confinement?

• Asymptotic states still only glueballs
• Polyakov loop can be defined
What about confinement?

- Asymptotic states still only glueballs
- Polyakov loop can be defined
- Energy of a static quark finite
What about confinement?

- Asymptotic states still only glueballs
- Polyakov loop can be defined
- Energy of a static quark finite
 - Screened by three gluons [Holland et al. NPA 2003]
What about confinement?

• Asymptotic states still only glueballs
• Polyakov loop can be defined
• Energy of a static quark finite
 • Screened by three gluons [Holland et al. NPA 2003]
 • Heavy state
• But string breaking can be observed [Wellegehausen et al. PRD 11]
What about confinement?

- Asymptotic states still only glueballs
- Polyakov loop can be defined
- Energy of a static quark finite
 - Screened by three gluons [Holland et al. NPA 2003]
 - Heavy state
- But string breaking can be observed [Wellegehausen et al. PRD 11]
- Polyakov loop must be non-zero
 - Only upper limit known [Pepe et al. NPA 2007]
What about confinement?

- Asymptotic states still only glueballs
- Polyakov loop can be defined
- Energy of a static quark finite
 - Screened by three gluons [Holland et al. NPA 2003]
 - Heavy state
- But string breaking can be observed [Wellegehausen et al. PRD 11]
- Polyakov loop must be non-zero
 - Only upper limit known [Pepe et al. NPA 2007]
- No center symmetry: What about the phase diagram?
Phase diagram of G2 quenched QCD
Phase diagram of G2 quenched QCD

- Phase line
- Temperature only external control parameter

Temperature only external control parameter
Phase diagram of G2 quenched QCD

- Phase line
 - Temperature only external control parameter
 - First order transition

$T_c \sim 255$ MeV

$T=0$ MeV

[Pepe et al. NPA 07, Greensite PRD 07, Cossu et al. JHEP 07]
Phase diagram of G2 quenched QCD

- Phase line
 - Temperature only external control parameter
 - First order transition
 [Pepe et al. NPA 07, Greensite PRD 07, Cossu et al. JHEP 07]

- Observed in thermodynamic observables
 - Free energy, heat capacity

\(T_c \approx 255 \text{ MeV} \)

\(T=0 \text{ MeV} \)
Phase diagram of G2 quenched QCD

- Phase line
 - Temperature only external control parameter
 - First order transition
 [Pepe et al. NPA 07, Greensite PRD 07, Cossu et al. JHEP 07]
 - Observed in thermodynamic observables
 - Free energy, heat capacity
 - Complicated by a bulk transition
 [Cossu et al. JHEP 07]

- Remains with quarks

\(T = 0 \text{ MeV} \)

\(T_c \approx 255 \text{ MeV} \)
Polyakov loop

- Almost zero at low temperatures
Polyakov loop

- Almost zero at low temperatures
- First-order signal at the phase transition

[Danzer, Gattringer, Maas, JHEP'09
Pepe et al. NPA'07]
Polyakov loop

- Almost zero at low temperatures
- First-order signal at the phase transition
- Significantly non-zero in the high-temperature phase
- Similar to full QCD

[Danzer, Gattringer, Maas, JHEP'09 Pepe et al. NPA'07]
Polyakov loop

- Almost zero at low temperatures
- First-order signal at the phase transition
- Significantly non-zero in the high-temperature phase
- Similar to full QCD
Polyakov loop

- Almost zero at low temperatures
- First-order signal at the phase transition
- Significantly non-zero in the high-temperature phase
- Similar to full QCD

[Danzer, Gattringer, Maas, JHEP'09
Pepe et al. NPA'07]
Polyakov loop

- Almost zero at low temperatures
- First-order signal at the phase transition
- Significantly non-zero in the high-temperature phase
- Similar to full QCD – what about chiral symmetry?
Chiral symmetry in G2

- Chiral symmetry is enlarged compared to ordinary QCD
Chiral symmetry in G2

- Chiral symmetry is enlarged compared to ordinary QCD
 - SU(2N) for N flavors instead of SU(N) x SU(N)
Chiral symmetry in G2

- Chiral symmetry is enlarged compared to ordinary QCD
 - SU(2N) for N flavors instead of SU(N)xSU(N)
 - Reason: Real representation
 - Chiral limit: Massless Majorana fermions
Chiral symmetry in G2

- Chiral symmetry is enlarged compared to ordinary QCD
 - SU(2N) for N flavors instead of SU(N) x SU(N)
 - Reason: Real representation
 - Chiral limit: Massless Majorana fermions
 - Baryon number is a well-defined U(1) subgroup
 - Quarks and anti-quarks are related

[Holland et al. NPA 03, Pepe et al. NPA 07]
Chiral symmetry in G2

- Chiral symmetry is enlarged compared to ordinary QCD
 - $\text{SU}(2N)$ for N flavors instead of $\text{SU}(N) \times \text{SU}(N)$
 - Reason: Real representation
 - Chiral limit: Massless Majorana fermions
 - Baryon number is a well-defined $U(1)$ subgroup
 - Quarks and anti-quarks are related
- Non-anomalous chiral symmetry breaking for 1 flavor possible

[Holland et al. NPA 03, Pepe et al. NPA 07]
Quenched G2 QCD

- Chiral symmetry 'broken' in quenched G2 QCD
Quenched G2 QCD

Polyakov loop transition

- Chiral symmetry 'broken' in quenched G2 QCD
Quenched G2 QCD

- Chiral symmetry 'broken' in quenched G2 QCD
- 'Restoration' at the phase transition

[Danzer, Gattringer, Maas, JHEP09]
Quenched G2 QCD

- Chiral symmetry 'broken' in quenched G2 QCD
- 'Restoration' at the phase transition
 - Like in QCD
 - Unlike adjoint QCD [Bilgici, Ilgenfritz, Gattringer, Maas JHEP 09]
Topological properties

• Coincidence in SU(N) gauge theory possibly connected to topological properties
 • Center vortices, monopoles, calorons,…
Topological properties

• Coincidence in SU(N) gauge theory possibly connected to topological properties
 • Center vortices, monopoles, calorons, …
 • What is the reason in G2?
Topological properties

- Coincidence in SU(N) gauge theory possibly connected to topological properties
 - Center vortices, monopoles, calorons,…
 - What is the reason in G2?
- G2 has instanton-like solutions of the classical equation of motions [Ilgenfritz & Maas, unpublished]
 - Direct product of two SU(3) instantons
 - S6 part only rotates them
Topological properties

- Coincidence in SU(N) gauge theory possibly connected to topological properties
 - Center vortices, monopoles, calorons,…
 - What is the reason in G2?
- G2 has instanton-like solutions of the classical equation of motions [Ilgenfritz & Maas, unpublished]
 - Direct product of two SU(3) instantons
 - S6 part only rotates them
- Change of topological properties at the phase transition?
Picture of G2 topological lumps

- Identified by cooling
Picture of G2 topological lumps

- Identified by cooling – single time slice
 - Action density
Picture of G2 topological lumps

- Identified by cooling – single time slice
 - Action density
 - Topological charge density
Topological susceptibility

- Fewer topological lumps the higher the temperature
Topological susceptibility

- Fewer topological lumps the higher the temperature
Topological susceptibility

- Fewer topological lumps the higher the temperature
- Topology reflects phase transition
Finite density

• Quenched G2 QCD has the same phase structure as quenched QCD
Finite density

- Quenched G2 QCD has the same phase structure as quenched QCD
- G2 has only real representations
Finite density

• Quenched G2 QCD has the same phase structure as quenched QCD
• G2 has only real representations
 • No sign problem: Positive fermion determinant
 • No sign problem for odd number of flavors
Finite density

- Quenched G2 QCD has the same phase structure as quenched QCD
- G2 has only real representations
 - No sign problem: Positive fermion determinant
 - No sign problem for odd number of flavors
 - Full phase diagram accessible

[Maas, von Smekal, Wellegehausen, Wipf '12]
Finite density

- Quenched G2 QCD has the same phase structure as quenched QCD
- G2 has only real representations
 - No sign problem: Positive fermion determinant
 - No sign problem for odd number of flavors
 - Full phase diagram accessible
- G2 has fermionic baryons
Finite density

- Quenched G2 QCD has the same phase structure as quenched QCD
- G2 has only real representations
 - No sign problem: Positive fermion determinant
 - No sign problem for odd number of flavors
 - Full phase diagram accessible
- G2 has fermionic baryons
 - Fermi effects at finite density correctly included
 - Important for compact stellar objects
Finite density

- Quenched G2 QCD has the same phase structure as quenched QCD
- G2 has only real representations
 - No sign problem: Positive fermion determinant
 - No sign problem for odd number of flavors
 - Full phase diagram accessible
- G2 has fermionic baryons
 - Fermi effects at finite density correctly included
 - Important for compact stellar objects
- 'Simplest' QCD with all these properties

[Maas, von Smekal, Wellegehausen, Wipf '12]
Finite density

- Quenched G2 QCD has the same phase structure as quenched QCD
- G2 has only real representations
 - No sign problem: Positive fermion determinant
 - No sign problem for odd number of flavors
 - Full phase diagram accessible
- G2 has fermionic baryons
 - Fermi effects at finite density correctly included
 - Important for compact stellar objects
- 'Simplest' QCD with all these properties
- **Unquenched** 1 flavor calculation
Phase diagram
Phase diagram

[Maas, von Smekal, Wellegehausen, Wipf '12]
Phase diagram

[Maas, von Smekal, Wellegehausen, Wipf '12]
Phase diagram

[Maas, von Smekal, Wellegehausen, Wipf '12]

Introduction – G2 Yang-Mills theory – G2 QCD – Summary

Start of lattice artifacts
Summary

• Conceptual insights
Summary

• Conceptual insights
 • Center is not relevant for:
Summary

• Conceptual insights
 • Center is not relevant for:
 • Phase transition
Summary

• Conceptual insights

 • Center is not relevant for:
 • Phase transition
 • Coincidence of chiral and 'deconfinement' phase transition
Summary

• Conceptual insights

 • Center is not relevant for:
 • Phase transition
 • Coincidence of chiral and 'deconfinement' phase transition
 • Topological properties
Summary

• Conceptual insights
 • Center is not relevant for:
 • Phase transition
 • Coincidence of chiral and 'deconfinement' phase transition
 • Topological properties
 • Quenched G2 QCD is almost the same as quenched QCD, up to the static potential
Summary

● Conceptual insights
 ● Center is not relevant for:
 ● Phase transition
 ● Coincidence of chiral and 'deconfinement' phase transition
 ● Topological properties
 ● Quenched G2 QCD is almost the same as quenched QCD, up to the static potential

● Practical insights: Phase diagram
Summary

- Conceptual insights
 - Center is not relevant for:
 - Phase transition
 - Coincidence of chiral and 'deconfinement' phase transition
 - Topological properties
 - Quenched G2 QCD is almost the same as quenched QCD, up to the static potential

- Practical insights: Phase diagram
 - Rough shape of the phase diagram of a gauge theory is similar to the expected one
 - More details: Next talk