QCD thermodynamics with continuum extrapolated Wilson fermions

Dániel Nógrádi

in collaboration with

Szabolcs Borsányi, Stephan Dürr, Zoltán Fodor,
Christian Hoelbling, Sándor D. Katz, Stefan Krieg
Kálmán K. Szabó, Bálint C. Tóth, Norbert Trombitás

Budapest — Wuppertal
Motivation

Let’s do continuum QCD thermodynamics with a fermion formulation which is known to be correct!

- Rooting procedure not fully understood \rightarrow Steve Sharp Lattice 2006
- Domain wall fermions \rightarrow expensive
- Overlap fermions \rightarrow even more so (but: Stefan Krieg today 3:50)
- Wilson fermions \rightarrow theoretically sound, correct and straightforward continuum limit (even in practice)
Motivation 2

Let’s check the staggered thermodynamics results!

- Even though ugly, probably correct

- Successful check for some quantities lends support for unchecked other quantities

- Check only meaningful in continuum limit for fully renormalized finite quantities

- For the check only, physical quark masses not essential (heavier quarks also universal)
Outline

- Staggered strategy vs Wilson strategy for thermodynamics
- Renormalization of $\bar{\psi}\psi$, χ_s and L
- Action and simulation parameters
- Results and comparison with staggered results in continuum limit
<table>
<thead>
<tr>
<th>Staggered</th>
<th>Wilson</th>
</tr>
</thead>
<tbody>
<tr>
<td>change β (N_t fix)</td>
<td>change $T = 1/aN_t$</td>
</tr>
<tr>
<td>continuous</td>
<td>steps in T</td>
</tr>
<tr>
<td>low temperature</td>
<td>large discr. errors</td>
</tr>
<tr>
<td>many times</td>
<td>tuning masses (LCP)</td>
</tr>
<tr>
<td>$N_t \to \infty$</td>
<td>continuum limit</td>
</tr>
<tr>
<td>yes</td>
<td>chiral symmetry</td>
</tr>
<tr>
<td>simple</td>
<td>renormalization</td>
</tr>
</tbody>
</table>
Our quantities

- quark number susceptibility: χ_s/T^2, finite in continuum limit (as in staggered)

- chiral condensate: $\bar{\psi}\psi$, needs renormalization (more tricky than staggered)

- Polyakov loop: L, needs renormalization
Renormalization of chiral condensate

Additive

\[\Delta_{\bar{\psi}\psi}(T) = \langle \bar{\psi}_0\psi_0 \rangle(T) - \langle \bar{\psi}_0\psi_0 \rangle(T = 0) \quad \text{Cancellation } O(a^{-3}) \]

\[\Delta_{PP}(T) = \int d^4x \langle P_0(x)P_0(0) \rangle(T) - \int d^4x \langle P_0(x)P_0(0) \rangle(T = 0) \]

\(P_0(x):\) bare pseudo-scalar condensate, cancellation \(O(a^{-2})\)

From axial Ward identity: \(2m_{PCAC}Z_A \Delta_{PP}(T) = \Delta_{\bar{\psi}\psi}(T) + O(a)\)
Renormalization of chiral condensate

Multiplicative

\[m_R \langle \overline{\psi} \psi \rangle_R(T) = m_{PCAC} Z_A \Delta_{\overline{\psi} \psi}(T) \]

Last year we didn’t have \(Z_A \) so used Ward identity and

\[m_R \langle \overline{\psi} \psi \rangle_R(T) = \frac{\Delta_{\overline{\psi} \psi}^2(T)}{2 \Delta_{PP}(T)} \]

Now we have \(Z_A \) (and also \(m_{PCAC} \)) so can use

\[m_R \langle \overline{\psi} \psi \rangle_R(T) = 2N_f m_{PCAC}^2 Z_A^2 \Delta_{PP}(T) \]

Best scaling among 3 choices!
Renormalization of chiral condensate, measurement of Z_A

Z_A is finite and $Z_A \rightarrow 1$ in the continuum limit

- Z_A is defined in the chiral limit

- $N_f = 3$ simulations at four quark masses, $m_s/3 < m_q < m_s$

- fixed volume $V \sim (2 \text{ fm})^4$

- RI-MOM: compute Z_V then $Z_A = Z_V \Gamma_V(p)/\Gamma_A(p)$

- dependence on p very small (systematic error)

- extrapolate to $m_q \rightarrow 0$ (very smooth)

<table>
<thead>
<tr>
<th>β</th>
<th>3.30</th>
<th>3.57</th>
<th>3.70</th>
<th>3.85</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_A</td>
<td>0.892(7)</td>
<td>0.951(2)</td>
<td>0.966(2)</td>
<td>0.976(5)</td>
</tr>
</tbody>
</table>
Renormalization of Polyakov loop

Additive divergence in free energy

Get rid of it by the scheme \(L_R(\mathcal{T}_0) = L_*, \) for some \(\mathcal{T}_0 > T_c \)

For Wilson: \(L_{R}(T) = \left(\frac{L_*}{L_0(\mathcal{T}_0)} \right)^{\mathcal{T}_0/T} L_0(T) \) at each \(\beta \)

For staggered a bit more tricky: first usual renormalization via static potential, then finite scheme change to above scheme
Action and simulation parameters

2 + 1 flavor, tree level Symanzik gauge action, 6 steps stout and tree level clover improved fermion action

\[m_\pi/m_\Omega = 0.326(4), \quad m_K/m_\Omega = 0.366(4) \] for both staggered and Wilson

Quark mass ratios \((2m_K^2 - m_\pi^2)/m_\pi^2 = 1.530(7) \) are tuned very precisely, \(m_s \) physical

\[m_\Omega = 1672 \text{ MeV sets scale} \rightarrow m_\pi \approx 545 \text{ MeV}, \quad m_K \approx 612 \text{ MeV} \]

Large volumes \(m_\pi L \gtrsim 8 \)

4 lattice spacings:

<table>
<thead>
<tr>
<th>(\beta)</th>
<th>3.30</th>
<th>3.57</th>
<th>3.70</th>
<th>3.85</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a \ [\text{fm}])</td>
<td>0.139(1)</td>
<td>0.093(1)</td>
<td>0.070(1)</td>
<td>0.057(1)</td>
</tr>
<tr>
<td>(V)</td>
<td>(32^3 \times 6 - 16)</td>
<td>(32^3 \times 8 - 16)</td>
<td>(48^3 \times 8 - 28)</td>
<td>(64^3 \times 12 - 28)</td>
</tr>
</tbody>
</table>
Continuum limit

Wilson simulation: discrete $N_t \rightarrow$ discrete T

Cubic spline interpolation in T

Continuum extrapolation of cubic spline coefficients using $O(a^2)$ and $O(a\alpha)$

Always have at least 3 lattice spacings
Results, χ_s/T^2 Wilson

\[\beta = 3.30 \]

Trick for disconnected part used from Ejiri et al. arXiv:0909.2121
Results, χ_s/T^2 Wilson

Trick for disconnected part used from Ejiri et al. arXiv:0909.2121
Results, χ_s/T^2 Wilson

Trick for disconnected part used from Ejiri et al. arXiv:0909.2121
Results, χ_s/T^2 Wilson

Trick for disconnected part used from Ejiri et al. arXiv:0909.2121
Results, χ_s/T^2 Wilson

Trick for disconnected part used from Ejiri et al. arXiv:0909.2121
Results, χ_s/T^2 staggered

![Graph showing χ_s/T^2 vs. T/m_Ω for $N_t = 6$.]
Results, χ_s/T^2 staggered
Results, χ_s/T^2 staggered

<table>
<thead>
<tr>
<th>N_t</th>
<th>MeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

\[\chi_s/T^2 \]
Results, χ_s/T^2 staggered
Results, χ_s/T^2 staggered
Results, χ_s/T^2 Wilson vs. staggered

The graph shows the comparison between the staggered continuum and Wilson continuum for χ_s/T^2 as a function of T/m_Ω. The staggered continuum is represented by blue markers, while the Wilson continuum is shown in red. The x-axis represents T/m_Ω ranging from 0.08 to 0.16, and the y-axis represents χ_s/T^2 ranging from 0 to 1.
Results, $\bar{\psi}\psi$ Wilson

\[m_{R\bar{\psi}\psi_R(T)} = 2N_f m_{PCAC}^2 Z_A^2 (PP(T) - PP(0)) \]
Results, $\bar{\psi}\psi$ Wilson

\[m_{R\bar{\psi}\psi_R}(T) = 2N_f m_{PCAC}^2 Z_A^2 (PP(T) - PP(0)) \]
Results, $\bar{\psi}\psi$ Wilson

\[m_{R\bar{\psi}\psi R}(T) = 2N_f m_{PCAC}^2 Z_A^2 (PP(T) - PP(0)) \]
Results, $\bar{\psi}\psi$ Wilson

\[m_{R\bar{\psi}\psi_R}(T) = 2N_f m_{PCAC}^2 Z_A^2 (PP(T) - PP(0)) \]
Results, $\bar{\psi}\psi$ Wilson

$m_{R\bar{\psi}_R\psi_R}(T) = 2N_f m_{PCAC}^2 Z_A^2 (PP(T) - PP(0))$
Results, $\bar{\psi}\psi$ staggered

\[m_{R\bar{\psi}\psi R} / m_\pi \]

\[T/m_\Omega \]

\[M_{\text{MeV}} \]

\[N_t = 6 \]
Results, $\bar{\psi}\psi$ staggered

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{chart.png}
\caption{Plot of $m_R\bar{\psi}\psi R / m_\pi$ vs T/m_Ω for $N_t = 6$ (solid green line) and $N_t = 8$ (dashed magenta line).}
\end{figure}
Results, $\bar{\psi}\psi$ staggered

- $N_t = 6$
- $N_t = 8$
- $N_t = 10$
Results, $\bar{\psi}\psi$ staggered
Results, $\bar{\psi}\psi$ staggered

\begin{figure}
\centering
\hspace{-1cm}
\includegraphics[width=\textwidth]{figure}
\caption{Plot showing $m_{R\bar{\psi}\psi R}/m_{\pi}$ vs T/m_{Ω} for different N_t.}
\end{figure}

The figure shows the continuum and the results for $N_t = 6, 8, 10, 12$.
Results, $\bar{\psi}\psi$ Wilson vs staggered

![Graph showing results of $\bar{\psi}\psi$ Wilson vs staggered continuum. The graph plots $m_{R\bar{\psi}\psi R}/m_\pi$ against T/m_Ω with MeV on the y-axis and T/m_Ω on the x-axis. The staggered continuum is represented by blue diamonds, and the Wilson continuum by red crosses. The data points show a decrease in the ratio as the temperature increases.]
Results, L Wilson

\[\beta = 3.30 \]
Results, L Wilson

\[L_R \text{ vs. } T/m_\Omega \]

- $\beta = 3.30$
- $\beta = 3.57$
Results, L Wilson

\begin{align*}
\beta &= 3.30 \\
\beta &= 3.57 \\
\beta &= 3.70
\end{align*}

MeV

\begin{align*}
L_R &
\end{align*}

T/m$_\Omega$

150 175 200 225 250 275
Results, \(L \) Wilson

\[
\begin{array}{c}
\beta = 3.30 \quad \text{green line} \\
\beta = 3.57 \quad \text{pink dashed line} \\
\beta = 3.70 \quad \text{blue dotted line} \\
\beta = 3.85 \quad \text{black dotted line}
\end{array}
\]
Results, L Wilson

![Graph showing continuum and different beta values]

- Continuum
- $\beta = 3.30$
- $\beta = 3.57$
- $\beta = 3.70$
- $\beta = 3.85$
Results, L staggered

$N_t = 6$

T/m_Ω vs. MeV

Plot shows a trend with L_R vs. T/m_Ω for different values of MeV. Notable values are shown in the image.
Results, L staggered

$N_t = 6$

$N_t = 8$
Results, L staggered

\begin{align*}
\text{MeV} & \\
\text{T/m Ω} & \\
N_t = 6 & \\
N_t = 8 & \\
N_t = 10 & \\
\end{align*}
Results, L staggered

\[\begin{array}{cccccc}
N_t &=& 6 & & & \\
N_t &=& 8 & & & \\
N_t &=& 10 & & & \\
N_t &=& 12 & & & \\
\end{array} \]
Results, L staggered
Results, \(L \) Wilson vs staggered

\[\begin{array}{cccccc}
0 & 0.08 & 0.1 & 0.12 & 0.14 & 0.16 \\
150 & 175 & 200 & 225 & 250 & 275
\end{array} \]

\[\begin{array}{cccccc}
L & R & T/m & Ω & MeV & staggered continuum & Wilson continuum
\end{array} \]
Summary and outlook

- Continuum thermodynamics with Wilson fermions is feasible

- Agreement between continuum staggered and continuum Wilson results

- Lighter pions are currently ongoing (look feasible)
Backup slides
Taste breaking in staggered simulations

\[m_\pi \text{ [MeV]} \]

\begin{align*}
N_t = 12 & \quad \text{transition} \\
N_t = 8 & \quad \text{transition}
\end{align*}

\[\gamma_i, \gamma_j, \gamma_i\gamma_5, \gamma_5 \]

\[a \text{ [fm]} \]