The LAGO project, status and prospects

Xavier Bertou

Centro Atómico Bariloche. Argentina

Third School on Cosmic Rays and Astrophysics, Arequipa, Perú, 1st September 2008

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ○ ○ ○

Outline

Gamma Ray Bursts

Discovery and Basic Understanding: Vela and BATSE

ヘロア 人間 アメヨア 人口 ア

- To the Sources: Beppo-SAX
- Present and Future: SWIFT, GLAST
- High Energy Detection
- 2 GRB detection by WCD
 - The Pierre Auger Observatory
 - The Large Aperture GRB Observatory
 - LAGO: Prototypes WCD and status
 - Possible Future

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Outline

Gamma Ray Bursts

Discovery and Basic Understanding: Vela and BATSE

ヘロト ヘワト ヘビト ヘビト

- To the Sources: Beppo-SAX
- Present and Future: SWIFT, GLAST
- High Energy Detection
- 2) GRB detection by WCD
 - The Pierre Auger Observatory
 - The Large Aperture GRB Observatory
 - LAGO: Prototypes WCD and status
 - Possible Future

Discovery of GRBs: Vela 5

GRBs - Vela 5

Discovered accidentally in the 60's by US military satellites

GRB

- $\Delta t \approx 0.01 \, s 100 \, s$
- E > 100 keV

Enigma for 30 years

- origin
- distance
- Iuminosity

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

・ 戸 ・ ・ 三 ・ ・

Discovery of GRBs: Vela 5

GRBs - Vela 5

Discovered accidentally in the 60's by US military satellites

GRB

- $\Delta t \approx 0.01 \, s 100 \, s$
- E > 100 keV

Enigma for 30 years

- origin
- distance
- Iuminosity

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

▲ □ ▶ ▲ □ ▶ ▲

Discovery of GRBs: Vela 5

GRBs - Vela 5

Discovered accidentally in the 60's by US military satellites

GRB

- $\Delta t \approx 0.01 \, s 100 \, s$
- E > 100 keV

Enigma for 30 years

- origin
- o distance
- Iuminosity

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

BATSE: 1991 - 2000

Compton Gamma Ray Observatory

OSSE 50 keV - 10 N	leV
--------------------	-----

- BATSE 20 keV 20 MeV
- COMPTEL 800 keV 30 MeV

EGRET 20 MeV - 30 GeV

BATSE

- Field of view: 4π sr
- Flux > 0.1 γ cm⁻² s⁻¹
- Angular resolution > 4°

The LAGO project

X. Bertou

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

BATSE: 1991 - 2000

Compton Gamma Ray Observatory

OSSE	50 keV - 10 MeV
OSSE	50 keV - 10 Me

- BATSE 20 keV 20 MeV
- COMPTEL 800 keV 30 MeV

EGRET 20 MeV - 30 GeV

BATSE

- Field of view: 4 π sr
- Flux > 0.1 γ cm⁻² s⁻¹
- Angular resolution > 4°

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

BATSE Signals

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

BATSE Signals

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

BATSE Signals

1 GRB per day (30% efficiency)

The LAGO project

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

BATSE Signals

1 GRB per day (30% efficiency)

The LAGO project

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Before BATSE

GRB were supposed to be born in our galaxy (neutron stars explosion?)

In such a case, an anisotropy was expected

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Before BATSE

GRB were supposed to be born in our galaxy (neutron stars explosion?)

n such a case, an anisotropy was expected

200

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Before BATSE

GRB were supposed to be born in our galaxy (neutron stars explosion?)

In such a case, an anisotropy was expected

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

BATSE sky

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Luminosity distribution

Deficit at low luminosity

- Galactic halo
- Cosmological distribution

BATSE showed

- GRBs are isotropes
- GRBs are not homogenous

・ロト ・ 同ト ・ ヨト ・ ヨト

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Luminosity distribution

Deficit at low luminosity

- Galactic halo
- Cosmological distribution

BATSE showed

- GRBs are isotropes
- GRBs are not homogenous

・ロト ・ 同ト ・ ヨト ・ ヨト

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Luminosity distribution

• GRBs are not homogenous

・ロト ・ 同ト ・ ヨト ・ ヨト

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Luminosity distribution

Deficit at low luminosity

- Galactic halo
- Cosmological distribution

BATSE showed

- GRBs are isotropes
- GRBs are not homogenous

・ロト ・ 同ト ・ ヨト ・ ヨト

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Luminosity distribution

Deficit at low luminosity

- Galactic halo
- Cosmological distribution

BATSE showed

- GRBs are isotropes
- GRBs are not homogenous

ヘロト ヘワト ヘビト ヘビト

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Luminosity distribution

Deficit at low luminosity

- Galactic halo
- Cosmological distribution

BATSE showed

- GRBs are isotropes
- GRBs are not homogenous

・ロト ・ 同ト ・ ヨト ・ ヨト

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Beppo-SAX - 1996-2002

X. Bertou

The LAGO project

- GRB 40-700 keV monitor
- Various X-rays detectors
- Angular resolution: 50"

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

GRB 970228

First coincidence Gamma - X

First afterglow, various days

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

GRB 970228

X. Bertou

The LAGO project

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

GRB 970508

Observation of absorption lines in the optical spectrum of the afterglow

Redshift: $Z \approx 0.84$

Cosmological origin

ヘロト ヘワト ヘビト ヘビト

э

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

ъ

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Redshifts

ヘロア 人間 アメヨア 人口 ア

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Redshifts

ヘロン ヘアン ヘビン ヘビン

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Redshifts

・ロット (雪) () () () ()
Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Current Status

SWIFT (2004-) allowed detection of short GRB afterglows, early flares, high redshifts GRBs...

Long GRBs

- happen in star formation zone
- likely to be core-collapse of massive stars
- connection with SN

Short GRBs

- dimmer, but harder spectrum
- coalescence of a pair of compact objects?
- more data still needed

ヘロト ヘワト ヘビト ヘビト

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Current Status

SWIFT (2004-) allowed detection of short GRB afterglows, early flares, high redshifts GRBs...

Long GRBs

- happen in star formation zone
- likely to be core-collapse of massive stars

connection with SN

Short GRBs

- dimmer, but harder spectrum
- coalescence of a pair of compact objects?
- more data still needed

・ロット (雪) () () () ()

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Current Status

SWIFT (2004-) allowed detection of short GRB afterglows, early flares, high redshifts GRBs...

Long GRBs

- happen in star formation zone
- likely to be core-collapse of massive stars

connection with SN

Short GRBs

- dimmer, but harder spectrum
- coalescence of a pair of compact objects?
- more data still needed

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

ヘロア 人間 アメヨア 人口 ア

ъ

The Fireball model

X. Bertou The LAGO project

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

ヘロア 人間 アメヨア 人口 ア

Near Future: towards higher energies

EGRET

- detected 16 GRBs
- spectrum with a power law of about \approx 2.2
- 3 GRBs with photons of $E_{\gamma} > 1 \text{ GeV}$
- maximum energy 18 GeV

Observation at higher energy could help

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

ヘロン ヘアン ヘビン ヘビン

Near Future: towards higher energies

EGRET

- detected 16 GRBs
- spectrum with a power law of about \approx 2.2
- 3 GRBs with photons of $E_{\gamma} > 1 \text{ GeV}$
- maximum energy 18 GeV

Observation at higher energy could help

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

ヘロア 人間 アメヨア 人口 ア

Near Future: towards higher energies

EGRET

- detected 16 GRBs
- spectrum with a power law of about \approx 2.2
- 3 GRBs with photons of E_γ > 1 GeV
- maximum energy 18 GeV

Observation at higher energy could help

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

ヘロア 人間 アメヨア 人口 ア

Near Future: towards higher energies

EGRET

- detected 16 GRBs
- spectrum with a power law of about \approx 2.2
- 3 GRBs with photons of $E_{\gamma} > 1 \text{ GeV}$
- maximum energy 18 GeV

Observation at higher energy could help

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

ヘロン ヘアン ヘビン ヘビン

-

Satellites and Ground based experiments

Satellites No background Flux limited

Ground based experiments

Huge background Can get large collection surface Atmosphere effect: absorbs low energy multiplies high energy

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

ヘロン ヘアン ヘビン ヘビン

-

Satellites and Ground based experiments

Satellites

No background Flux limited

Ground based experiments

Huge background Can get large collection surface Atmosphere effect: absorbs low energy multiplies high energy

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

ヘロン ヘアン ヘビン ヘビン

ъ

Satellites and Ground based experiments

Satellites

No background Flux limited

Ground based experiments

Huge background

Can get large collection surface Atmosphere effect: absorbs low energy multiplies high energy

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

ヘロン ヘアン ヘビン ヘビン

ъ

Satellites and Ground based experiments

Satellites

No background Flux limited

Ground based experiments

Huge background Can get large collection surface Atmosphere effect: absorbs low energy multiplies high energy

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

ヘロア 人間 アメヨア 人口 ア

Satellites and Ground based experiments

Satellites

No background Flux limited

Ground based experiments

Huge background Can get large collection surface Atmosphere effect: absorbs low energy multiplies high energy

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

ヘロト ヘワト ヘビト ヘビト

Example of Ground based capabilities

Chacaltaya

5200 m a.s.l. Background about 8 kHz/m²

 $\sqrt{background} \approx 90 Hz$ 1 s burst 8 σ is about 720 particles One 100 GeV photon produces about 1000 particles at ground level at 5200 m a.s.l.

A fluence of 1 particle per m² at 100 GeV can be seen from the ground

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Example of Ground based capabilities

Chacaltaya

5200 m a.s.l. Background about 8 kHz/m²

 $\sqrt{background} \approx 90 Hz$ 1 s burst 8 σ is about 720 particles One 100 GeV photon produces about 1000 particles at ground level at 5200 m a.s.l.

A fluence of 1 particle per m² at 100 GeV can be seen from the ground

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

・ロット (雪) () () () ()

Example of Ground based capabilities

Chacaltaya

5200 m a.s.l. Background about 8 kHz/m²

 $\sqrt{background} \approx 90 Hz$ 1 s burst 8 σ is about 720 particles One 100 GeV photon produces about 1000 particles at ground level at 5200 m a.s.l.

A fluence of 1 particle per m^2 at 100 GeV can be seen from the ground

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Single Particle Technique

A different use of a ground array

With SPT, there is no direction and/or energy reconstruction

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Single Particle Technique

A different use of a ground array

With SPT, there is no direction and/or energy reconstruction

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Single Particle Technique

A different use of a ground array

With SPT, there is no direction and/or energy reconstruction

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

Single Particle Technique

A different use of a ground array

With SPT, there is no direction and/or energy reconstruction

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

ヘロト ヘワト ヘビト ヘビト

HECR Atmospheric Showers

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

HECR Atmospheric Showers

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

HECR Atmospheric Showers

Discovery and Basic Understanding: Vela and BATSE To the Sources: Beppo-SAX Present and Future: SWIFT, GLAST High Energy Detection

・ロット (雪) () () () ()

HECR Atmospheric Showers

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Outline

Gamma Ray Bursts

• Discovery and Basic Understanding: Vela and BATSE

ヘロト ヘワト ヘビト ヘビト

- To the Sources: Beppo-SAX
- Present and Future: SWIFT, GLAST
- High Energy Detection
- 2 GRB detection by WCD
 - The Pierre Auger Observatory
 - The Large Aperture GRB Observatory
 - LAGO: Prototypes WCD and status
 - Possible Future

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

The Pierre Auger Observatory

- Located in Malargüe, Mendoza, at 1400 m asl
- 1600 Water Cherenkov Detectors in operation
- (fluorescence telecopes)

Scalers

 $\begin{array}{l} \mbox{Low (3 ADC}\approx 6 \mbox{ pe}\approx 15 \mbox{ MeV}) \mbox{ scaler count,} \\ \mbox{Muon (20 ADC}\approx 100 \mbox{ MeV}) \mbox{ scaler count,} \\ \mbox{Send to central DAQ difference of both every second} \end{array}$

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

The Pierre Auger Observatory

- Located in Malargüe, Mendoza, at 1400 m asl
- 1600 Water Cherenkov Detectors in operation
- (fluorescence telecopes)

Scalers

 $\begin{array}{l} \mbox{Low (3 ADC}\approx 6 \mbox{ pe}\approx 15 \mbox{ MeV}) \mbox{ scaler count,} \\ \mbox{Muon (20 ADC}\approx 100 \mbox{ MeV}) \mbox{ scaler count,} \\ \mbox{Send to central DAQ difference of both every second} \end{array}$

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Simulation of Auger WCD Response

1.4 billion showers simulated with CORSIKA (no thinning) between 10 MeV and 10 TeV, 0 and 30 degrees Detector response with G4FastSim (Auger fast version of G4)

Photons trigger probability Photons trigger probability 1 E E P_{Hoper}(E) 0,1 Vertical • Vertical y 2 ADC 1 Fold 3 ADC 1 Fold - 3 ADC 1 Fold - - - 3 ADC 2 Fold 4 ADC 1 Fold -- 5 ADC 1 Fold 0.01 0.01 0,5 15 2.5 0.5 1.5 2.5 2 log(E) MeV

X. Bertou

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Comparison of Auger Response with Scintillator array

Comparison with other detectors

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Auger Scaler data analysis

- 300 tanks minimum
- min 500 Hz
- keep 95% median tanks

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Auger Scaler data analysis

- 300 tanks minimum
- min 500 Hz
- keep 95% median tanks

ヘロト ヘワト ヘビト ヘビト

э

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Auger Scaler data analysis

Pressure Effect

ヘロト ヘワト ヘビト ヘビト

э

X. Bertou The LAGO project

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Auger Scaler data analysis

・ロト ・ 同ト ・ ヨト ・ ヨト

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Auger Data

Univ Lighning Events

X. Bertou The LAGO project

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Auger Data

Sensitivity \approx 2 particles/m²

Rate vs Station Id

Only Ligthning Events

X. Bertou The LAGO project

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Euture

Auger Data

Sensitivity \approx 2 particles/m²

Rate vs Station Id

X. Bertou

The LAGO project
The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Auger Data

Sensitivity \approx 2 particles/m²

Rate vs Station Id

Only Ligthning Events

X. Bertou The

The LAGO project

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Lightning in Auger

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

・ロト ・ 理 ト ・ ヨ ト ・

3

Auger Results for 18 months of data (March 2007)

No GRB detected: limit on GRB high energy fluence

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

ヘロト ヘアト ヘビト ヘビ

Auger Results for 18 months of data (March 2007)

No GRB detected: limit on GRB high energy fluence

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

LAGO

LAGO

Large Aperture GRB Observatory

Idea

Detect GRB at high energy from the ground

Who?

Argentina Bolivia Mexico Venezuela

+ France, Italy, Peru

How?

Using WCD:

Easy to calibrate

• Detect Photons

Where?

In high altitude mountain sites (> 4500 m)

э

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

LAGO

LAGO

Large Aperture GRB Observatory

Idea

Detect GRB at high energy from the ground

Who?

Argentina Bolivia Mexico Venezuela

+ France, Italy, Peru

How?

Using WCD:

Easy to calibrate

• Detect Photons

Where?

In high altitude mountain sites (> 4500 m)

э

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

LAGO

LAGO

Large Aperture GRB Observatory

Idea

Detect GRB at high energy from the ground

Who?

Argentina Bolivia Mexico Venezuela

+ France, Italy, Peru

How?

Using WCD:

Easy to calibrate

• Detect Photons

Where?

In high altitude mountain sites (> 4500 m)

э

・ロット (雪) () () () ()

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

LAGO

LAGO

Large Aperture GRB Observatory

Idea

Detect GRB at high energy from the ground

Who?

Argentina Bolivia Mexico Venezuela

+ France, Italy, Peru

How?

Using WCD:

- Easy to calibrate
- Detect Photons

Where?

In high altitude mountain sites (> 4500 m)

э

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

LAGO

LAGO

Large Aperture GRB Observatory

Idea

Detect GRB at high energy from the ground

Who?

Argentina Bolivia Mexico Venezuela

+ France, Italy, Peru

How?

Using WCD:

- Easy to calibrate
- Detect Photons

Where?

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

In high altitude mountain sites (> 4500 m)

э

The Pierre Auger Observatory **The Large Aperture GRB Observatory** LAGO: Prototypes WCD and status Possible Future

Why going in altitude

- 100 × more signal
- 8 × more noise
- $S/\sqrt{N} \approx 35 \approx \sqrt{1600}$

1 detector at 5200 m \approx 1600 Auger detectors at 1400 m

ヘロト ヘワト ヘビト ヘビト

э

The Pierre Auger Observatory **The Large Aperture GRB Observatory** LAGO: Prototypes WCD and status Possible Future

Why going in altitude

At 5200 m

- 100 × more signal
- 8 × more noise
- $S/\sqrt{N} \approx 35 \approx \sqrt{1600}$

1 detector at 5200 m \approx 1600 Auger detectors at 1400 m

ヘロト ヘワト ヘビト ヘビト

The Pierre Auger Observatory **The Large Aperture GRB Observatory** LAGO: Prototypes WCD and status Possible Future

Why going in altitude

At 5200 m

- 100 × more signal
- 8 × more noise
- $S/\sqrt{N} \approx 35 \approx \sqrt{1600}$

1 detector at 5200 m \approx 1600 Auger detectors at 1400 m

・ロット (雪) () () () ()

The Pierre Auger Observatory **The Large Aperture GRB Observatory** LAGO: Prototypes WCD and status Possible Future

Why going in altitude

At 5200 m

- 100 × more signal
- 8 × more noise
- $S/\sqrt{N} \approx 35 \approx \sqrt{1600}$

1 detector at 5200 m \approx 1600 Auger detectors at 1400 m

・ロット (雪) () () () ()

э

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

ъ

Sensitivity vs Altitude and Size

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

LAGO Sites

Various sites

- Sierra Negra, Mexico
- Mérida, Venezuela
- Chacaltaya, Bolivia
- Auger South, Argentina

Detection in coincidence $\Delta\Omega_{[Auger, Chacaltaya]}\approx 15^\circ$

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

LAGO Sites

Various sites

- Sierra Negra, Mexico
- Mérida, Venezuela
- Chacaltaya, Bolivia
- Auger South, Argentina

Detection in coincidence $\Delta\Omega_{[Auger, Chacaltaya]}\approx 15^{\circ}$

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

LAGO Sites

Various sites

- Sierra Negra, Mexico
- Mérida, Venezuela
- Chacaltaya, Bolivia

Auger South, Argentina

Detection in coincidence $\Delta\Omega_{[Auger, Chacaltaya]}\approx 15^\circ$

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

LAGO Sites

Various sites

- Sierra Negra, Mexico
- Mérida, Venezuela
- Chacaltaya, Bolivia
- Auger South, Argentina

Detection in coincidence $\Delta\Omega_{[Auger, Chacaltaya]}\approx 15^\circ$

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

LAGO Sites

Various sites

- Sierra Negra, Mexico
- Mérida, Venezuela
- Chacaltaya, Bolivia
- Auger South, Argentina

Detection in coincidence $\Delta\Omega_{[\textit{Auger},\textit{Chacaltaya}]}\approx 15^{\circ}$

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

LAGO Sites

Various sites

- Sierra Negra, Mexico
- Mérida, Venezuela
- Chacaltaya, Bolivia
- Auger South, Argentina

Detection in coincidence $\Delta\Omega_{[\textit{Auger},\textit{Chacaltaya}]}\approx 15^{\circ}$

Other sites in Argentina and/or Peru?

The Pierre Auger Observatory **The Large Aperture GRB Observatory** LAGO: Prototypes WCD and status Possible Future

Pictures

X. Bertou	The LAGO project

The Pierre Auger Observatory **The Large Aperture GRB Observatory** LAGO: Prototypes WCD and status Possible Future

Pictures

X. Bertou

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Pictures

X. Bertou

The LAGO project

Pictures II: Sierra Negra

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

X. Bertou

The LAGO project

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Prototype Detectors

Prototypes for Chacaltaya

- Old prototype equipment from Auger (EA):
 - Electronics
 - PMTs

• Commercial water tanks:

- 1 PMT per tank
- 6 tanks per electronic
- Software rewritten:
 - 4 scalers per PMT
 - 5 ms time sampling

La Paz prototype

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Low cost

X. Bertou

The LAGO project

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Prototype Detectors

Prototypes for Chacaltaya

- Old prototype equipment from Auger (EA):
 - Electronics
 - PMTs
- Commercial water tanks:
 - I PMT per tank
 - 6 tanks per electronic
- Software rewritten:
 - 4 scalers per PMT
 - 5 ms time sampling

a Paz prototype

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

X. Bertou

The LAGO project

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Prototype Detectors

Prototypes for Chacaltaya

- Old prototype equipment from Auger (EA):
 - Electronics
 - PMTs
- Commercial water tanks:
 - I PMT per tank
 - 6 tanks per electronic
- Software rewritten:
 - 4 scalers per PMT
 - 5 ms time sampling

_a Paz prototype

ヘロト ヘワト ヘビト ヘビト

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Prototype Detectors

Prototypes for Chacaltaya

- Old prototype equipment from Auger (EA):
 - Electronics
 - PMTs
- Commercial water tanks:
 - I PMT per tank
 - 6 tanks per electronic
- Software rewritten:
 - 4 scalers per PMT
 - 5 ms time sampling

La Paz prototype

ヘロア 人間 アメヨア 人口 ア

э

Low cost

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Prototype Detectors

Prototypes for Chacaltaya

- Old prototype equipment from Auger (EA):
 - Electronics
 - PMTs
- Commercial water tanks:
 - I PMT per tank
 - 6 tanks per electronic
- Software rewritten:
 - 4 scalers per PMT
 - 5 ms time sampling

La Paz prototype

イロト 不得 とくほ とくほう

Low cost

X. Bertou

The LAGO project

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Building Bariloche prototype: Nahuelito

X. Bertou

The LAGO project

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Last built prototype: Mérida, Venezuela

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Going up to Pico Espejo

The LAGO project

900

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Current Status

Bariloche

Running 1 m² prototype detector

Chacaltaya

Running 1 m² detector at 5200 m Two 3.8 m² in calibration stage

Mérida

Running 3.5 m² prototype detector Three 4 m² plastic tanks at 4750 m

Sierra Negra

14 m² with runnning DAQ

- $2 \times 1 \text{ m}^2$ detectors
- $\bullet~3\times4\,m^2$ detectors

ヘロト ヘワト ヘビト ヘビト

More than 6 months of accumulated data

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Current Status

Bariloche

Running 1 m² prototype detector

Chacaltaya

Running 1 m^2 detector at 5200 m Two 3.8 m^2 in calibration stage

Mérida

Running 3.5 m² prototype detector Three 4 m² plastic tanks at 4750 m

Sierra Negra

14 m² with runnning DAQ
2 × 1 m² detectors
3 × 4 m² detectors

More than 6 months of accumulated data

ヘロト ヘワト ヘビト ヘビト

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Current Status

Bariloche

Running 1 m² prototype detector

Chacaltaya

Running 1 m^2 detector at 5200 m Two 3.8 m^2 in calibration stage

Mérida

Running 3.5 m^2 prototype detector Three 4 m^2 plastic tanks at 4750 m

Sierra Negra

14 m² with runnning DAQ
2 × 1 m² detectors
3 × 4 m² detectors

More than 6 months of accumulated data

ヘロト ヘワト ヘビト ヘビト

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Current Status

Bariloche

Running 1 m² prototype detector

Chacaltaya

Running 1 m^2 detector at 5200 m Two 3.8 m^2 in calibration stage

Mérida

Running 3.5 m^2 prototype detector Three 4 m^2 plastic tanks at 4750 m

Sierra Negra

14 m² with runnning DAQ

- $2 \times 1 \text{ m}^2$ detectors
- $3 \times 4 \, m^2$ detectors

ヘロト ヘワト ヘビト ヘビト

More than 6 months of accumulated data
The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Current Status

Bariloche

Running 1 m² prototype detector

Chacaltaya

Running 1 m^2 detector at 5200 m Two 3.8 m^2 in calibration stage

Mérida

Running 3.5 m^2 prototype detector Three 4 m^2 plastic tanks at 4750 m

Sierra Negra

14 m² with runnning DAQ

- $2 \times 1 \text{ m}^2$ detectors
- $3 \times 4 \, m^2$ detectors

More than 6 months of accumulated data

Broken since mid august

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

イロト 不得 とくほと くほとう

3

Issues - Theory

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

ヘロト 人間 とくほとくほとう

3

Issues - Theory

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Issues - Real data

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Issues - Real data

Lightning

Use one scaler below baseline or one unconnected channel

ヘロト ヘワト ヘビト ヘビト

э

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Issues - Real data

Lightning

Use one scaler below baseline or one unconnected channel

・ロト ・ 同ト ・ ヨト ・ ヨト

э

X. Bertou

The LAGO project

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Lightning

X. Bertou The

The LAGO project

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

・ロト ・ 同ト ・ ヨト ・ ヨト

э

Results for SN site (October 2007)

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

LAGO Improvements

Sierra Negra: Stability

DAQ PC replaced by SBC: - 200 MHz ARM, 32 MB

- Debian Linux
- 3 COM ports, 2 USB, 10/100 eth -<1~W

New sites

- higher gain PMT (SPE)
- wavelenght shifter (Amino-G)
- higher altitude
- internet connection

New data analysis

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

LAGO Improvements

Sierra Negra: Stability

DAQ PC replaced by SBC:

- 200 MHz ARM, 32 MB
- Debian Linux
- 3 COM ports, 2 USB, 10/100 eth < 1 W

New sites

- higher gain PMT (SPE)
- wavelenght shifter (Amino-G)
- higher altitude
- internet connection

New data analysis

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

LAGO Improvements

Sierra Negra: Stability

DAQ PC replaced by SBC:

- 200 MHz ARM, 32 MB
- Debian Linux
- 3 COM ports, 2 USB, 10/100 eth < 1 W

New sites

- higher gain PMT (SPE)
- wavelenght shifter (Amino-G)
- higher altitude
- internet connection

New data analysis

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Further steps

Milagro goes to Sierra Negra

Need for an HAWC Sur? (Galactic Center)

Other detection technique: Fluorescence? *Auger, Sierra Negra*

・ロト ・ 同ト ・ ヨト ・ ヨト

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Further steps

Milagro goes to Sierra Negra

Need for an HAWC Sur? (Galactic Center)

Other detection technique: Fluorescence? Auger, Sierra Negra

・ロト ・ 同ト ・ ヨト ・ ヨト

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Further steps

Milagro goes to Sierra Negra

Need for an HAWC Sur? (Galactic Center)

Other detection technique: Fluorescence? *Auger, Sierra Negra*

・ロト ・ 同ト ・ ヨト ・ ヨト

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Conclusion

GRBs are no longer such a mystery Waiting for information at high energies (low fluxes)

WCD are very efficient to detect GRB from the ground

Auger is competitive with dedicated ground based experiments

An efficient dedicated experiment can be done at low cost by using WCD at high altitude

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Conclusion

GRBs are no longer such a mystery Waiting for information at high energies (low fluxes)

WCD are very efficient to detect GRB from the ground

Auger is competitive with dedicated ground based experiments

An efficient dedicated experiment can be done at low cost by using WCD at high altitude

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Conclusion

GRBs are no longer such a mystery Waiting for information at high energies (low fluxes)

WCD are very efficient to detect GRB from the ground

Auger is competitive with dedicated ground based experiments

An efficient dedicated experiment can be done at low cost by using WCD at high altitude

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Conclusion

GRBs are no longer such a mystery Waiting for information at high energies (low fluxes)

WCD are very efficient to detect GRB from the ground

Auger is competitive with dedicated ground based experiments

An efficient dedicated experiment can be done at low cost by using WCD at high altitude

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Conclusion

GRBs are no longer such a mystery Waiting for information at high energies (low fluxes)

WCD are very efficient to detect GRB from the ground

Auger is competitive with dedicated ground based experiments

An efficient dedicated experiment can be done at low cost by using WCD at high altitude

The Pierre Auger Observatory The Large Aperture GRB Observatory LAGO: Prototypes WCD and status Possible Future

Conclusion

Pico Espejo, Venezuela, 4750 m a.s.l.

ヘロト ヘアト ヘビト ヘビ

Thank You !!!

Sierra Negra, Mexico, 4650 m a.s.l.