The KASCADE-Grande Experiment

KASCADE-Grande

Vitor de Souza

University of Karlsruhe desouza@ik.fzk.de

Universidade de São Paulo vitor@ifsc.usp.br

KASCADE-Grande Collaboration

Universität Siegen Experimentelle Teilchenphysik M. Brüggemann, P. Buchholz, C. Grupen, D.Kickelbick, Y. Kolotaev, S. Over, W. Walkowiak

Institut für Kernphysik Forschungszentrum and University of Karlsruhe

W.D. Apel, J.C. Arteaga, F. Badea, K. Bekk, J. Blümer,
H. Bozdog, F. Cossavella, K. Daumiller, V. de Souza, P. Doll,
R. Engel, J. Engler, M. Finger, H.J. Gils, A. Haungs, D. Heck,
J.R. Hörandel, T. Huege, P.G. Isar, H.O. Klages, H.-J. Mathes,
H.J. Mayer, C. Meurer, J. Milke, A. Morales, S. Nehls,
J. Oehlschläger, S. Ostapchenko, T. Pierog, S. Plewnia,
H. Rebel, M. Roth, H. Schieler, M. Stümpert, H. Ulrich,
J. van Buren, A. Weindl, J. Wochele

EDEN ESTONIA SCOTLAND RUSSIA **IRELANE** North LATVIA See IRELAND. LITHUANIA Universität Wuppertal Soltan Institute for ENGLAND HOLAND Fachbereich Physik Nuclear Studies, Lodz D. Fuhrmann. P. Luczak. R. Glasstetter, K-H. Kampert CZECH R J. Zabierowski FRANCE AUSTRIA SWITZERLAND HUNGARY IFSI, INAF SLOVENIA ROMANIA CROATIA JGAL and University of Torino ITALY BULGA M. Bertaina, D. Borla Tridon, A. Chiavassa, F. Di Pierro, Institute of Physics and Nuclear TU Medilarranean Se P. Ghia, C. Morello, GREECE Engeneering, Bucharest G. Navarra, G. Trinchero I.M. Brancus, B. Mitrica, M. Petcu, O.Sima, G.Toma http://www-ik.fzk.de/KASCADE-Grande/

LOPES Collaboration

ASTRON, DWINGELOO,

THE NETHERLANDS

L. BÄHREN	H. BUTCHER
G. DE BRUYN	C.M. DE VOS
G.W. KANT	Y. KOOPMAN
H.J. PEPPING	G. SCHOONDERBEEK
W. VAN GAPELLEN	S. WIJNHOLDS

UNIV WUPPER	TAL, GERMANY
J. AUFFENBERG	R. GLASSTETTER
K.H. KAMPERT	J. RAUTENBERG

DEPT OF ASTROPHYSICS,

NIJMEGEN, THE NETHERLANDS

S. BUITINK H. FALCKE A. HORNEFFER J. KUIJPERS S. LAFEBRE A. NIGL J. PETROVIC K. SINGH

NATIONAL INSTITUTE OF PHYSICS

AND NUCLEAR ENGINEERING

BUCHAREST, ROMANIA

I.M. BRANCUS	
М. РЕТСИ	
D. SIMA	

в.	
А.	SAFTIOU
G.	Тома

DIPARTIMENTO DI FISICA GENERALE DELL'UNIVERSITA, TORINO, ITALY

M. BERTAINA

F. DI PIERRO

A. CHIAVASSA

G. NAVARRA

INSTITUT FÜR KERNPHYSIK,

FZK, GERMANY

.D. APEL	J.C. ARTEAGA
.F. BADEA	К. ВЕКК
. BLÜMER	H. Bozdog
. COSSAVELLA	K. DAUMILLER
. Doll	R. ENGEL
. HAKENJOS	A. HAUNGS
. Неск	T. HUEGE
.G. ISAR	H.J. MATHES
J. MAYER	G. MEURER
. MILKE	S. NEHLS
. BENLAND	J. DEHLSCHLÄG
. OSTAPCHENKO	T. PIEROG
- PLEWNIA	H. REBEL
I. Rотн	H. SCHIELER
L ULRICH	J. VAN BUREN
WEINDL	J. WOCHELE

IPE, FZK, GERMANY

T. ASCH **D.** KRÖMER H. GEMMEKE

ER

UNIV KARLSRUHE, GERMANY

BETTINI	V. DE SOUZA			
HAKENJOS	J.R. HÖRANDEL			
1. STÜMPERT				

UNIVERSITÄT SIEGEN, GERMANY

M. BRÜGGEMANN	P. BUCHHOLZ
C. GRUPEN	D. KICKELBICK
Y. KOLOTAEV	S. OVER
W. WALKEWIAK	

MAX-PLANCK-INSTITUT FÜR RAC	
ASTRONOMIE, BONN, GERMANY	

P.L. BIERMANN

J.A. ZENSUS

ISTITUTO DI FISICA DELLO SPAZIO INTERPLANETARIO, TORINO, ITALY

P.L. GHIA

G. MORELLO

G.C. TRINCHERO

SOLTAN INSTITUTE FOR

NUCLEAR STUDIES, LODZ, POLAND

P. LUCZAK

-		_	_	-		
	-					
100	7.0		FF		MALE	-
	Z F	чы		< L I	WV H	

KASCADE Cosmic Ray Facility

Forschungszentrum Karlsruhe

The Detectors: KASCADE

KASCADE

Scintillators

Charged Particles

Muon

The Detectors: KASCADE-Grande

KASCADE-Grande

Detects the Charged Particles

KASCADE

Area = $4x10^4 \text{ m}^2$ Spacing = 13 m = $4x10^{-2} \text{ km}^2$

Area = 0.5 km^2 Spacing = irregular

The Detectors: Hadron Calorimeter

Central Calorimeter

The Detectors: Muon Tracking

Measures muon production height

The Detectors: Radio Antennas

KASCADE Cosmic Ray Facility KArlsruhe Shower Core and Array DEtector

- <u>KASCADE Array</u>
 e/γ > 5 MeV
 μ > 230 MeV
 - <u>Grande Array</u>

Charged Particles

- Hadron Calorimeter

Hadrons > 50 GeV

- Muon Tracking Detector

 μ > 800 MeV

- <u>LOPES</u>

Radio Measurements

Scientific Motivation for the KASCADE-Grande Experiment

Astroparticle Physics

Α

Т

Μ

O S

Ρ

Η

Ε

R

Ε

Forschungszentrum Karlsruhe

Scientific Motivation

Pelé and the cosmic ray spectrum

1363 matches1282 goals3 World Cups

Knees and ankle

Scientific Motivation

Scientific Motivation

Astrophysical models

Composition change at the sources

To understand the astroparticle physics with energy between 10¹⁵ to 10¹⁸ eV one experiment has to measure the composition evolution between the knees

proton

DATA ANALYSIS

Arrival Direction: KASCADE

Time Resolution of the Scintilators < 1 ns

Arrival Direction: KASCADE

Reconstruction:

core position number of electrons number of muons

Fit a function to the lateral distribution of particles and calculate the total number of muons and electrons

KASCADE

Grande

Area = $4x10^4 \text{ m}^2$ Spacing = 13 m Area = 0.5 km² Spacing = irregular = $4x10^{-2} \text{ km}^2$

At the First KneeAt the Second KneeCore resolution ~ 1 mCore resolution ~ 10 mDirection ~ 0.15°Direction ~ 0.5°Total Number of Muons ~ 10%Total Number of Muons ~ 20%Total Number of Electrons ~ 5%Total Number of Electrons ~ 20%

Subset of events with extra information: hadron + muon tracking + radio

Central Calorimeter

Central Calorimeter

Muon Counting

Hadron Counting

Efficiency correction calculated with Monte Carlo simulation

Radio Antennas

Electric field strength changing in time

RESULTS

First Knee (10¹⁵ – 8x10¹⁶ eV)

252 stations 10⁹ events triggered 10⁶ events used for composition

Direct Measurement

First knee caused by the decreasing flux of light elements. MC is used only for normalization.

Muon Tracking Detector Muon production height used as a estimation of the particle mass

P. Doll et al., ICRC2007

2D Spectrum

Unfold the 2D Spectrum

Given a probability density distribution

the data ?

what is the energy spectrum of each mass component

For details and full equations see:

KASCADE Collaboration, Astroparticle Physics 24 (2005) 1-25, astro-ph/0505413

Particles Spectra

Light elements

Proton Flux

First knee is caused by the decreasing flux in the light component

Heavy elements

Iron Flux

FIRST KNEE IS WELL MEASURED

LET'S GO FOR THE SECOND KNEE

The Detectors: KASCADE-Grande

2.5 year of data Preliminary results Analysis in progress 2 x 10⁶ events

Basis for composition

Energy Spectrum

V. de Souza, ICRC 2007

CORSIKA (QGSJet II)

Second knee is being studied The data is good News coming soon

Test of hadronic interaction models

Idea: perform full simulations (air shower & detector) using CORSIKA & GEANT3 Check consistency of results for extreme assumptions (p & Fe induced showers) Check all air shower components:

electromagnetic, muonic, and hadronic

QGSJET 98 VENUS SIBYLL 1.6	J. of Phys. G: Nucl. and Part. Phys. 25 (1999) 2161
DPMJET II.55	DPMJET II.5
QGSJET 01	
SIBYLL 2.1	
NEXUS 2	J. of Phys. G: Nucl. and Part. Phys. 34 (2007) 2581

Test of hadronic interaction models

Idea: perform full simulations (air shower & detector) using CORSIKA & GEANT3 Check consistency of results for extreme assumptions (p & Fe induced showers) Check all air shower components:

electromagnetic, muonic, and hadronic

Calculate a Chi-square for each model

H. Ulrich, ICRC2007

Hadronic Interaction Models

- Muon density measured by KASCADE
- Direct measurement
- Bins of 20 meters distance of the shower axis
- Minor dependency on LDFs fit
- Total number of electrons and energy are used only for binning purposes

CORSIKA (QGSJet II)

Hadronic Interaction Models

7.0 < Log10 (Number of Electrons) < 7.3

Hadronic Interaction Models

Remark

EPOS can not describe the muon data

QGSJet II is in good agreement with the muon data

Hints for EPOS

Electrons up by 50 %

Arbitrary Shift

Muons down by 20 %

<u>Anisotropy</u>

GRANDE

Significance distribution

Anisotropy

NO LARGE SCALE ANISOTROPY

positron electron ~2/2

Radio Emission

- Charge separation in Earth's magnetic field

classical electric dipole

- Gyration of particles

emission of synchrotron radiation

- Particles are in a shower thin disk

coherent emission

beamed into propagation direction

- Timescales for pulses are relativistically shortened

pulse 10-100 ns

Radio Signal

Monte Carlo simulation

Energy reconstruction

Composition

T. Huege et al. astro-ph 0806.1161

Hardware of LOPES

LOPES-Antenna

Receiver Module

short dipole
beamwidth
80°-120°
(parallel/
perpendicular
to dipole)

- direct sampling with minimal analog parts: amplifier, filter, ADconverter
 sampling with 80MSPS
- in the 2nd Nyquist domain of the ADC

uses PC133type memory
up to 6.1 s
per channel
pre- and
post-trigger
capability

Memory Buffer

First light

KASCADE

e/y-detector, run 004702 event 0294563

Energy $\approx 10^{17} \text{eV}$ Core surrounded by antennas $\Theta = 25.5^{\circ}, \ \Phi = 42.5^{\circ}$

TRIGGER

LOPES Collaboration, Nature 425 (2005) 313

LOPES Results

LOPES References:

A. Saftoiu et al., ICRC 2007 Petrovic et al., A&A 462 1 (2007) 389 Apel et al., Astrop.Phys. 26 (2006) 332 Horneffer et al., ICRC 2005

LOPES 30

30 antennas Absolute Calibration Trigger from: KASCADE + Grande

G. Isar et al., ICRC2007 S. Nehls et al., ICRC2007

LOPES STAR

T. Asch, ICRC2007

Final Remarks

- Independent analysis show the decrease of the light component flux
 - lateral distribution of muon
 - total muon number versus total electron number
 - muon production height
- The knee position vary with the primary particle
- No knee in the iron component was measured but results depends on hadronic interaction model

Final Remarks

- New data from KASCADE-Grande
 - Total number of electron and muon spectra
 - Few events around 10¹⁸ eV
 - Energy spectrum in agreement with KASCADE
- No anisotropy seen, limits on flux were set
- High level of activity in radio: detection, simulation and analysis.
Final Remarks

- Hadronic Interaction Models
 - First knee can be safely studied
 - Second knee might need some new analysis procedures
 - All hadronic interaction models have problems to fully describe the data in a consistent way

Final Remarks

- QGSJet
 - good agreement muon number
 - problems at lower energies to reproduce a combined electron and muon measurements
- Sibyll
 - severe problems to describe the intermediate range (Log10 $\,N_{_{\rm H}}\,\sim$ 5 and Log10 $\,N_{_{\rm e}}\,\sim$ 6)
- EPOS
 - version 1.6 has problems to describe the data
 - new EPOS version is being prepared

Thanks to the Organizing Committee

KASCADE-Grande

Vitor de Souza

vitor@ifsc.usp.br