Cosmic Antimatter

Stéphane Coutu The Pennsylvania State University

3rd School on Cosmic Rays and Astrophysics Arequipa, Peru August 28-29, 2008

Outline

- Cosmic Rays
- Antimatter: Positrons, Antiprotons
 - Origins, secondary vs. primary vs. exotic
 - Early theory and data
 - New measurements (HEAT, others)
 - Current results and status
- Searches for heavy antimatter (e.g., Anti-Helium)
- Future Prospects

Cosmic Rays

Production Acceleration (Crab)

Cosmic Rays

- Composition (at ~GeV): 85% H (p) 12% He (α) 1% heavier nuclei 2% e[±] (≥90% e⁻) 10⁻⁵-10⁻⁴ antiprotons.
- Energy spectrum spans ≥ 13 orders of magnitude.

Fluxes rescaled by E²

Cosmic Rays

HEAT Missions (NASA)

- Antimatter measurements
- Balloon missions
- 1994 2002

p, pbar, e[±] in Cosmic Rays

 Primary p, nuclei, e⁻ produced at CR acceleration sites (e.g. supernova shocks);

p, pbar, e[±] in Cosmic Rays

- Primary p, nuclei, e⁻ produced at CR acceleration sites (e.g. supernova shocks);
- Secondary e[±] produced in equal numbers in the ISM: CR nuclei + ISM ⇒ π[±] → μ[±] → e[±];
- Secondary pbars, rare nuclei also produced in the ISM;

p, pbar, e[±] in Cosmic Rays

- Primary p, e⁻ produced at CR acceleration sites (e.g. supernova shocks);
- Secondary e[±] produced in equal numbers in the ISM:
 CR nuclei + ISM ⇒ π[±] → μ[±] → e[±];
- Secondary pbars, rare nuclei also produced in the ISM;
- Antimatter, rare nuclei probe ISM structure and primary nucleon component; since antimatter is rare, look for:
- "Exotic" pbars, e[±]?
 - Annihilating dark matter particles (e.g. neutralinos);
 - $\gamma \rightarrow e^{\pm}$ near pulsar magnetic poles;
 - CR nuclei + Giant Molecular Cloud $\rightarrow e^{\pm}$ + reacceleration;
 - Evaporating primordial black holes.

Exotic Antimatter

 \sim

0+

e-

 $\widetilde{\chi}$

pbar Measurements as of 2000

If pbars are secondary, expect:

- E_{th}~7GeV, few pbars <1 GeV
- Solar modulation below ~1GeV
- Decrease in pbar/p at high E;
- Excellent BESS measurements below ~few GeV;
- Several secondary production models, *e.g.*: MSR-1: local nucleon spectrum, MSR-2: hard nucleon spectrum (explains EGRET data);
- Primary pbar predictions (WIMP annihilation, PBH evaporation) agree that the contribution is small at best;
- High statistics measurements needed at 5-50 GeV

HEAT-pbar (High Energy Antimatter Telescope)

The HEAT-pbar Collaboration

U of Chicago: A. Labrador, D. Müller, S.P. Swordy Northern Kentucky U.: S.L. Nutter Indiana U: A. Bhattacharyya, C. Bower, J.A. Musser U of Michigan: S.P. McKee, M. Schubnell, G. Tarlé, A.D. Tomasch Penn State U.: A.S. Beach, J.J. Beatty, S. Coutu, S. Minnick U. Minnesota: M. DuVernois

- Superconducting Magnet Spectrometer with Drift Tube Hodoscope (DTH), Multiple Ionization (dE/dx) Detector and Time-of-Flight (TOF) system.
- 1) Jun. 2000 flight from Ft. Sumner, NM (22 hour flight)

2) May 2002 flight from Ft. Sumner, NM (6 hour flight; failed balloon)

Launch 9 am

Scientific Ballooning

Balloon inflation 8 am

Identifying Antiprotons with HEAT-pbar

DTH:

- p from amount of bending in B=1T
- Sign of Z from direction

Identifying Antiprotons with HEAT-pbar

 Multiple dE/dx: p / π-μ / e separation
 Technique exploits the logarithmic rise in the mean rate of energy loss (Bethe-Bloch):

$$-\frac{dE}{dx} = Kz^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \beta^2 \gamma^2 T_{\text{max}}}{I^2} - \beta^2 - \frac{\delta}{2} \right]$$

Identifying Antiprotons with HEAT-pbar

Multiple dE/dx: $p / \pi - \mu / e$ separation

New Antiproton Results

- BESS, IMAX, MASS, CAPRICE and HEAT data in agreement with secondary production expectations;
- No support for 'hard nucleon injection spectrum' models;
- Prospects for primary pbar detection (e.g. from WIMP annihilation) not good;
- Good agreement with model indicates mature understanding of secondary antimatter production and propagation.

HEAT: 71 pbars above 4.2 GeV CAPRICE: 31 pbars

Positron Fraction as of 1995

- Positron fraction e⁺/(e⁺ + e⁻) is small (≈ 10%) ⇒ substantial primary e⁻ component.
- Below ~7 GeV: data in agreement with secondary predictions (large solar modulation effects below 1 GeV);
- Above ~7 GeV: more antimatter than expected!
 ⇒ additional ("exotic") antimatter component?
 - Turner/Wilczek light WIMP annihilation (×20);
 - Kamionkowski/Turner heavy WIMP annihilation (×10).
 - Positron line is a "smoking gun" for WIMPs.

HEAT-e[±] (High Energy Antimatter Telescope)

The HEAT-e[±] Collaboration

U of Chicago: J. Knapp, D. Müller, S.P. Swordy, E. Torbet Eastern New Mexico U: S.L. Nutter Indiana U: C. Bower, J.A. Musser UC Irvine: S.W. Barwick, E. Schneider U of Michigan: C. Chaput, S.P. McKee, G. Tarlé, A.D. Tomasch Penn State U: J.J. Beatty, S. Coutu, M. DuVernois Washington U St. Louis: G. de Nolfo, D. Ficenec

- Superconducting Magnet Spectrometer with Drift Tube Hodoscope (DTH), Electromagnetic Calorimeter (EC), Transition Radiation Detector (TRD) and Time-of-Flight (TOF) system.
- 1) May 1994 flight from Ft. Sumner, NM (29.5 hour flight)
 2) Aug. 1995 flight from Lynn Lake, Manitoba (26 hour flight)

Identifying Positrons with HEAT-e[±]

- dE/dx losses in MWPC
- TR for e^{\pm} ($\gamma = E/mc^2 > 4 \times 10^3$)

Identifying Positrons with HEAT-e[±]

■ EC:

- EM showers for e[±]
- Hadronic or no showers for p

Identifying Positrons with HEAT-e[±]

DTH & EC:

- E/p agrees with expectations
- Overall 10⁵ p rejection, 33% electron efficiency

Correcting for Background

Atmospheric secondaries contribution estimated by GEANT-based Monte Carlo:

- electron correction: 5-6%; positron correction: 44-52%
- proton correction: 5-6%; antiproton correction: 14-26%
- systematic uncertainty: ~30% => e⁺/(e⁺+e⁻) systematics: ~ 1%

pbar / p systematics: ~ 4%

e.g., positron fraction:

- from growth curve:
 0.056 ± 0.038
- from data with MC corrections: 0.057 ± 0.006

Positron Fraction since 1995

- New positron fraction measurements are more statistically significant, with much improved hadron rejection power;
- Rise beyond about 10 GeV *not* confirmed!
- New detailed model predictions of e⁺, pbar, γ production and propagation;
- Results much closer to secondary production expectations.

HEAT Positron Fraction $e^{+}/(e^{+}+e^{-})$

June 2000 New Mexico (4GV cutoff) **HEAT-pbar** Solar max

Moskalenko & ApJ 493, 694(98) Galactic diffusion calculation 30

Positrons from Annihilating Galactic Halo WIMPs

- Kamionkowski/Turner, Phys. Rev. D 43, 1774 (1991):
- Heavy WIMP
 ⇒ Z or W production
 ⇒ Direct decay into e[±]
 ⇒ Other decay modes of the Z,W: π⁺ → μ⁺ → e⁺

Positrons from Annihilating Galactic Halo WIMPs

- Large region of MSSM space explored (Baltz/Edsjö, Phys. Rev. D 59, 023511 (1999); Baltz, Edsjö, Freese & Gondolo, Phys. Rev. D 65, 063511 (2002);
- Heavy WIMPs required (few hundred GeV);
- e⁺ enhancement not as good a fit as KT, but helps.

Positron Excess and Other SUSY Models

- Kane, Wang and Wells, astro-ph/0108138 (2001), hep-ph/0202156 (2002);
- χχ→ WW annihilation, W decays, Galactic propagation; e⁺/(e⁺+e⁻) enhancement at ~10 GeV (insensitive to WIMP mass!);
- Non thermal processes in the early universe.

34

Positrons from γ Rays Near Compact Objects

- Harding/Ramaty, 20th ICRC 2, 92 (1987): γ→ e⁺e⁻ near pulsar magnetic pole.
- Positron fraction: monotonic rise with energy to ~0.5

Positrons from γγ Interactions Near Discrete Sources

- Aharonian/Atoyan, J. Phys. G 17, 1769 (1991): γ_{he}γ_{uv} → e⁺e⁻ near high-intensity γ_{uv} source (e.g., OB star):

 Energy threshold for mechanism of m_ec² / 4ε₀, where ε₀ is
 - the mean energy of γ_{uv} .

Positrons from Giant Molecular Clouds

- Dogiel/Sharov, A&A 229, 259 (1990):
- p-stuff → π⁺ → μ⁺ → e⁺ in large molecular clouds;
 Fermi acceleration by gas turbulence.
- Rather contrived...

Heavy Antimatter

- Anti-Helium searches unsuccessful so far; best limit by BESS balloon spectrometer (Orito, S. *et al.*, PRL 84, 1078 (2000)).
- ~ GeV extragalactic antimatter horizon only at best 60 Mpc due to magnetic fields (Adams, F.C. et al., Ap.J. 491, 6 (1997)).
- Any relic antimatter is not likely to be detected in cosmic rays.

Conclusions

Antiprotons

- Measurements consistent with purely secondary production of antiprotons.
- Data are in good agreement with 'standard spectrum' model.
- HEAT-pbar antiproton data confirm reliability of secondary production model.

Positrons

- Positrons appear to be mainly from CR interactions in ISM but slight feature exists above ~7 GeV.
- New positron fraction measurements with HEAT-pbar confirm HEAT-e[±] results. Feature seen in experiments:
 - With two independent techniques.
 - At solar maximum and minimum.
 - At two different geomagnetic cutoff rigidities.
- Existing primary astrophysical e⁺ models do not explain the structure well.
- Feature (amplitude, location and shape) can be naturally reproduced with some SUSY models that are still allowed by current accelerator limits.

Most Recent Antimatter Measurements

PAMELA (Satellite, launched June 15th 2006 from Baikonur, 3 year mission, 0.05 – 280 GeV for positrons?);
Expect ~ 30 times balloon exposure

Most Recent Antimatter Measurements

PAMELA (Satellite, launched June 15th 2006 from Baikonur, 3 year mission, 0.05 – 280 GeV for positrons?);
Expect ~ 30 times balloon exposure (~15 times so far).

 $\Delta 1$

Outlook

Alpha Magnetic Spectrometer (AMS);

- ISS, launch on STS ?? 2010 or 2011 if funding approved by U.S. Congress for one last Space Shuttle mission;
- 3 year mission, 0.1 200 GeV?
- Possibly ~ 900 × balloon exposure.

Positron Electron Balloon Spectrometer (PEBS);
Long-Duration balloon flights in Antarctica;
2010 – 2012?
20-30 day flights × 3, 1 – 100 GeV?

