

High Energy Cosmic Ray Interactions (Lecture 1: Basics)

Ralph Engel Karlsruhe Institute of Technology (KIT)

Outline

Lecture I – Basics, low-energy interactions

- Energies, projectile and target particles
- Cross sections
- Particle production threshold: resonances
- Hadronic interactions of gamma-rays

Lecture 2 – Intermediate energy physics

- Intermediate energy range: two-string models
- String fragmentation
- Rapidity, Feynman scaling
- Inclusive fluxes, spectrum weighted moments

Lecture 3 – Highest energies, air shower phenomenology

- Minijets, multiple interactions, scaling violation
- Model predictions, uncertainties
- Elongation rate theorem
- Outlook: accelerator measurements

Examples of cosmic ray interactions

Centaurus A

Air shower

Radiation fields

Four-momentum kinematics

Calculation with four-momenta (c=1) $p = (E, \vec{p})$

$$p_1 \cdot p_2 = E_1 E_2 - \vec{p_1} \cdot \vec{p_2}$$
$$p^2 = E^2 - \vec{p}^2 = m^2$$

Resonance production

Energy-momentum conservation

$$p_1 + p_2 = p_3$$

Mass of produced resonance

$$p_3^2 = m_3^2 = (p_1 + p_2)^2 = (E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2$$
$$= p_1^2 + 2p_1 \cdot p_2 + p_2^2 = m_1^2 + m_2^2 + 2E_1E_2 - 2\vec{p}_1 \cdot \vec{p}_2$$

Laboratory and center-of-mass system

Mass of produced resonance

$$p_3^2 = m_3^2 = (p_1 + p_2)^2 = (E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2$$
$$= p_1^2 + 2p_1 \cdot p_2 + p_2^2 = m_1^2 + m_2^2 + 2E_1E_2 - 2\vec{p}_1 \cdot \vec{p}_2$$

Lab system:
$$p_1 = (E_1, \vec{p}_1)$$
 $p_2 = (m_2, \vec{0})$

$$m_3^2 = 2m_2E_1 + m_1^2 + m_2^2$$

Center-of-mass system (CMS, *): $\vec{p}_1^{\star} = -\vec{p}_2^{\star}$

$$\left(m_3^2 = (E_1^{\star} + E_2^{\star})^2\right)$$

CMS energy:

$$E_{\rm cm} = \sqrt{s} = E_1^\star + E_2^\star$$

Interaction of protons with photons of CMB

In proton rest frame:

 $E_{\gamma,\text{lab}} \approx 300 \text{ MeV}$

Decay branching ratio proton:neutron = 2:1 Mean proton energy loss 20% Decay isotropic up to spin effects

Cross section

Fundamental Lorentz-invariant quantity, can be measured at accelerators

``Master'' equation for interaction rates

 $dN_{\rm int}$ $= \rho_{target} \sigma \Phi$

Compilation of total cross sections

10

Simulation concepts: energy ranges

Example:

Low-energy interaction model SOPHIA

Description of proton/neutron interaction with background photons, Greisen-Zatsepin-Kuzmin effect

SOPHIA (Mücke et al. Comp. Phys. Commun. 124, 2000)

Diagrams implemented in SOPHIA

Direct pion production

Possible interpretation: p fluctuates from time to time to n and π^{+}

Superposition of resonances

Baryon resonances and their physical parameters implemented in SOPHIA (see text). Superscripts ⁺ and ⁰ in the parameters refer to $p\gamma$ and $n\gamma$ excitations, respectively. The maximum cross section, $\sigma_{\text{max}} = 4m_{\text{N}}^2 M^2 \sigma_0 / (M^2 - m_{\text{N}}^2)^2$, is also given for reference

Resonance	М	Г	$10^{3}b_{\gamma}^{+}$	σ_0^+	σ_{\max}^+	$10^3 b_{\gamma}^0$	σ_0^0	$\sigma_{ m max}^0$
Δ(1232)	1.231	0.11	5.6	31.125	411.988	6.1	33.809	452.226
N(1440)	1.440	0.35	0.5	1.389	7.124	0.3	0.831	4.292
N(1520)	1.515	0.11	4.6	25.567	103.240	4.0	22.170	90.082
N(1535)	1.525	0.10	2.5	6.948	27.244	2.5	6.928	27.334
N(1650)	1.675	0.16	1.0	2.779	7.408	0.0	0.000	0.000
N(1675)	1.675	0.15	0.0	0.000	0.000	0.2	1.663	4.457
N(1680)	1.680	0.125	2.1	17.508	46.143	0.0	0.000	0.000
$\Delta(1700)$	1.690	0.29	2.0	11.116	28.644	2.0	11.085	28.714
$\Delta(1905)$	1.895	0.35	0.2	1.667	2.869	0.2	1.663	2.875
Δ(1950)	1.950	0.30	1.0	11.116	17.433	1.0	11.085	17.462

Breit-Wigner resonance cross section

$$\sigma_{\rm bw}(s; M, \Gamma, J) = \frac{s}{(s - m_{\rm N}^2)^2} \frac{4\pi b_{\gamma} (2J + 1) s \Gamma^2}{(s - M^2)^2 + s \Gamma^2}$$

Multiparticle production: vector meson dominance

Photon is considered as superposition of ``bare'' photon and hadronic fluctuation

$$|\gamma\rangle = |\gamma_{\text{bare}}\rangle + P_{\text{had}}\sum_{i}|V_{i}\rangle$$

$$P_{\text{had}} \approx \frac{1}{300} \dots \frac{1}{250}$$

Cross section for hadronic interaction $\sim 1/300$ smaller than for pi-p interactions

Lifetime of fluctuations

Consider photon with momentum k

$$V_i = \rho, \omega, \phi, \dots$$

Heisenberg uncertainty relation $\Delta E \ \Delta t \approx 1$

Length scale (duration) of hadronic interaction $\Delta t_{
m int} < 1 {
m fm} pprox 5 {
m GeV}^{-1}$

$$\Delta t \approx \frac{1}{\Delta E} = \frac{1}{\sqrt{k^2 + m_V^2 - k}} = \frac{1}{k(\sqrt{1 + m_V^2/k^2} - 1)} \approx \frac{2k}{m_V^2}$$

Fluctuation long-lived for k > 3 GeV

$$\Delta t \approx \frac{2k}{m_V^2} > \Delta t_{\rm int}$$

Putting all together: description of total cross section

- PDG: 9 resonances, decay channels, angular distributions
- Regge parametrization at higher energy
- Direct contribution: fit to difference to data

Many measurements available, still approximations necessary

Comparison with measured partial cross sections

Comparison with measured partial cross sections

