### Detectors of Cosmic Rays Gamma-Rays and Neutrinos



G. Navarra University – INFN Torino – Italy

Third School on Cosmic Rays and Astrophysics August 25 to September 5, 2008 Arequipa - Perú EAS Radio technique and Neutrino & gamma-ray detectors (introduction)

(|||)





## EAS RADIO DETECTION:

## SYNCHROTRON RADIATION

Synchrotron radiation is the electromagnetic radiation emitted by charged particles that are moving (in circular orbits) at extremely high speeds (close to the speed of light) in a magnetic field.

#### From Cyclotron to Synchrotron radiation

- $F = e (v_{\perp} B) = \gamma m v_{\perp}^2 / r_g$
- $r_g = \gamma m v_{\perp} / e B = v_{\perp} / \omega_g$
- $\omega_g = e B / \gamma m$
- $T = 2\pi\gamma m / eB$
- If  $\phi'$  isotropic in rest-frame  $\phi$  in lab:
- $\sin(\phi) = [\sin(\phi') / (1+\beta\cos(\phi'))] / \gamma$ => beamed inside cone opening  $\alpha \sim / \gamma$
- $\Delta t_{obs} = (T \alpha / 2 \pi) (1-v/c) =$ = 2 \pi \gamma m / (e B) 1/ \gamma / (2 \pi) (1/2\gamma^2)

aD: / <sub>V</sub>

[(1-v/c) Doppler term]

modules &  $|\underline{v}| = v_{\perp}$ 

 $\rightarrow v_{sync} \sim 1/\Delta t_{obs} \sim (e B/m) \cdot \gamma^2$ 



For comparison, the observed field from a cyclotron radiation is a sinusoidal function, vs. the synchrotron is spikes due to the  $\_1$  beaming.



This leads to many frequency components necessary to describe the energy distribution shape.



- $v_{sync} \sim 1/\Delta t_{obs} \sim (e B/m) \cdot \gamma^2$
- $v_{sync}^{corr} = (3 \text{ e B}/4 \pi \text{ m}) \cdot \gamma^2$

 $(3 \times 1.6 \ 10^{-19} \times 0.3 \ 10^{-4} \ / \ 4 \ \pi \times 9 \ 10^{-31}) \ 10^{+4} \ \sim 10 \ \text{GHz}$ 

- Ee ~ 50 MeV coherence
- $\lambda > d_{electron \, disk} \simeq (1-10 \text{ m})$
- $v = c / \lambda < c / 3 [m] = 3.10^8 / 3 = 10^8 s^{-1}$
- v < 100 MHz

#### **Theory and Simulations**

- 1. analytical calculation of emission processes
- 2. Monte Carlo simulations of radio signals with input of parameterized air showers
- 3. Monte Carlo simulations of radio signals with input of CORSIKA simulated air showers





expectations on
 frequency spectrum
 lateral distribution
 polarization
 ...

T. Huege & H. Falcke Astrop. Phys. 24 (2005) 116

#### **Radio Emission Processes**

- First discovery: Jelley et al. (1965), Jodrell Bank at 44 MHz.
- Theory papers by Kahn & Lerche (1968) and Colgate (1967)



### **Radio Emission Processes**

- First discovery: Jelley et al. (1965), Jodrell Bank at 44 MHz.
- Theory papers by Kahn & Lerche (1968) and Colgate (1967)
- coherence if  $\lambda_{rad}$  < thickness of shower disk (some 10 MHz)
- e<sup>+</sup>e<sup>-</sup> separation in geomagnetic field?
- or geosynchrotron radiation? (Gorham/Falcke)

Allan formula (1971) from his review:

$$\varepsilon_v = 20 \left(\frac{E_p}{10^{17} \,\mathrm{eV}}\right) \sin \alpha \cdot \cos \theta \cdot \exp \left(-\frac{R}{R_0(v,\theta)}\right) \left[\frac{\mu V}{\mathrm{m} \cdot \mathrm{MHz}}\right]$$

 $ε_v$ : field strength; α: angle to B-field; θ: zenith angle; *R* distance from core;  $R_0$ =110 m at 55 MHz

> A 10<sup>17</sup> eV airshower produces a 1 GJy radio flare in 25 ns (40 MHz bandwidth)! (The brightest radio source, the sun has 1MJy.)





Goal: Answer long standing question:
Are EAS observable by their radio signals ? (30-80 MHz)
Observe EAS at their maximum, 24 hrs a day!

KASCADE-Grande used as a reference and trigger



#### 10 antennae in field, triggered by KASCADE (now 30 antennae)





# Beam-forming



Interconnection of several telescopes

- telescopes observe same source (beamed)
- sums up field of views
- suppression of (uncorrelated) noise
- resolution scales with baseline (~ $\lambda$ /b instead of ~ $\lambda$ /d)



## A bright Radio Event in LOPES



#### event in KASCADE

- energy ≈ 10<sup>17</sup> eV
- EAS core inside antennas
- $\Theta$  = 25.5°,  $\Phi$  = 42.5°
- 8 antennas were working and show signals
- signal is coherent







#### **LOPES Experiment: Proof of principle**





Measured EAS; Falcke et al. Nature 435 (2005)

#### Radio signal vs muon number



Log (Energy)

Radio Maps after beam forming Similar initiative: Codalema; Ardouin et al.

#### Buitink et al. (LOPES coll.) A&A 467(2007)385

# Synchrotron?



1-cos(Geomagnetic Angle)

Isar et al. (LOPES coll.) ICRC(2007) Merida



- radio pulse amplitude per unit bandwith
- primary energy
- angle to geomagnetic field
- zenith angle

ε

E

α

θ

- R distance to shower axis
- R<sub>0</sub> scaling radius (110 m at 55 MHz)

```
H.R. Allan, review 1971, p.269
```

ε<sub>est-EW</sub> = (11±1) • ((1.16±0.025)- cos α) • cos θ • exp( - R / (236±81)m) • ( E / 10<sup>17</sup>eV)<sup>(0.95±0.04)</sup> [µV/m MHz]

LOPES coll, ICRC 2007

# Moreover.. work in progress:

- Inclined events (...neutrinos)
- Depth of maximum
- Thunderstorm identification
- Angular resolution
- Energy threshold
- Ultra High Energies (...Auger)
- Auto-trigger

# HIGH ENERGY NEUTRINO (C.L.)

### Dumand

- 1976 conceptual design
- 1987 prototypes 7-15" PMTs in 17" glass vessels
- Deployment to 4.5 km depth
- 1993 funding stopped





## Neutrino detectors

• Small cross section:

Interaction cross section  $\sigma(\nu_{u}N) ~\approx 6.7~\bullet 10^{-36} \bullet ~E[TeV] ~/cm^{2}/~n$ 

Interaction probability [H<sub>2</sub>O, d=1km]: W=N<sub>A</sub> $\sigma d\rho \approx 4 \bullet 10^{-7} \bullet E$  [TeV]

around TeV, than  $\sim E^{0.4}$ 

Relevant  $v_{\mu} + N \rightarrow N + X + \mu$ 

# And large background:



# **Detection principle**





Cherenkov light from  $\mu$  detected by 3D PMT array

Direction reconstructed from time & position of hits



### For muon neutrinos



Muon range in water

Muon energy loss

Neutrino can be detected outside detection volume

# Scale of the array grid

| medium    | n        | $\theta_{\max}(\beta=1)$ | $N_{ph} (eV^{-1} cm^{-1})$ |
|-----------|----------|--------------------------|----------------------------|
| air       | 1.000283 | 1.36                     | 0.208                      |
| isobutane | 1.00127  | 2.89                     | 0.941                      |
| water     | 1.33     | 41.2                     | 160.8                      |
| quartz    | 1.46     | 46.7                     | 196.4                      |



 $N_{pe} \sim N_{ph}$ . (I /sin  $\theta$ ). I/(2  $\pi$  d cos  $\theta$ ).  $\varepsilon_q > 1$ 

d < N<sub>ph</sub>. (I /sin  $\theta$ ). I/(2  $\pi$  cos  $\theta$ ).  $\epsilon_q$ 

~ 160 30<sup>2</sup> 0.2 /  $\pi$  ~ 100 m  $\leftarrow$  scale of array (no absorption)

#### Antares detector layout

planned are 900 PMT, 12 lines, 25 stories/ line, 3 PMT/ story





### Display of a downgoing muon in Line 1



# Nestor

#### depth: ~4000m

transmission length:  $55 \pm 10m$  at  $\lambda$ =460 nm

underwater currents: <10 cm/sec (measured over the last 10 years )

optical background: ~50 kHz/OM due to K40 decay, bioluminescence activity (1% of the experiment live time)

sedimentology tests: flat clay surface on sea floor good anchoring ground.





# THE NEMO PROJECT

NEM

- Extensive exploration of a site close (80 km) to Capo Passero near Catania, depth 3340 m
- More than 20 sea campaigns on the site to measure and monitor water optical properties, optical background, deep sea currents, nature and quantity of sedimenting material
- R&D towards km<sup>3</sup>: architecture, mechanical structures, readout, electronics, cables ...

#### Example: Flexible tower

- 16 arms / tower, 20 m arm length, arms 40 m apart
- 64 PMs per tower
- Underwater connections
- Up- and down-looking PMTs





#### The Mediterranean KM3



## The Baikal detector site



## Deployment

Ice – a natural deployment platform, stable for 6-8 weeks/year:

- Maintenance & upgrades
- Test & installation of new equipment
- Operation of surface detectors (EAS, acoustics,...)
- Electrical winches used for deployment operations



# Baikal NT200+



NT200 + 3 new strings, 200 m height, 36 OMs

Goal: improvement of sensitivity to neutrino induced cascades (EM+Hadronic showers)


### IceCube installation on South Pole



#### January 2005: 60 optical modules Deepest module at 2450 m

An up-going neutrino induced muon in IceCube

### T. Gaisser



# Media Comparison

| lce<br>(AMANDA, ICECUBE)                                | Sea Water<br>(ANTARES, NEMO,<br>NESTOR, KM3NeT)               | Fresh Water<br>(Baikal)                                   |
|---------------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------------------|
| Long absorption<br>length (fewer PMTs<br>required)      | Short absorption<br>length (more<br>expensive)                | Unlike ice the<br>absorption length is<br>short: (22±2m)  |
| Short scattering<br>length - poor angular<br>resolution | <u>Very</u> long scattering<br>length (>~200m)                | Scattering length is (16 ÷ 70)m at 490nm                  |
| No Potassium-40<br>present - low noise<br>environment   | Potassium-40 present                                          | Little Potassium-40<br>present - low noise<br>environment |
| No bioluminescence                                      | Bioluminescent burst<br>activity observed and<br>understood   | No bioluminescence                                        |
| No repair of detector components possible               | Surfacing, repair and<br>re-deployment of<br>strings possible | As for sea water<br>during summer<br>months               |

### **Optical properties**



Abs. Length Baikal 22 ± 2 m

Scatt. Length Baikal ~ 30-50 m

### Diffuse flux (AMANDA II)



200 May 0 astro-ph > 5 cn \_ S 010

# **UHE energy neutrinos**

### Radio, Acoustic detection, Auger



Neutrino detection require low background (e.g. deep underground/underwater arrays). At sea level it can be realized by "looking" in very inclined directions, i.e. selecting very inclined events (~ 90 degrees).

How select neutrino candidates?

#### AUGER

1



### Vertical vs Horizontal Showers





#### Antares detector layout

planned are 900 PMT, 12 lines, 25 stories/ line, 3 PMT/ story



## Radio Askaryan Effect

Proposed in 1961 + In a neutrino-induced cascade there is a net moving negative charge ~20% of overall charge + Predominantly due to positron annihilation and  $A \rightarrow A_{7+1} + e^{-1}$ + This relativistically moving charge will produced Cerenkov radiation

Target requirements:radio quiet

- instrumentable
- radio transparent



- This time in the radio spectrum - typically 0.1 to few GHz
- → Should be coherent (P<sub>RF</sub>
   ∝ E<sup>2</sup> at radio frequencies
- Should be above thermal noise at high E
- Detectable at a distance
- Radiation polarised

## Radio Askaryan Effect

Proposed in 1961 + In a neutrino-induced cascade there is a net moving negative charge ~20% of overall charge + Predominantly due to positron annihilation and  $A \rightarrow A_{7+1} + e^{-1}$ + This relativistically moving charge will produced Cerenkov radiation

Target requirements:radio quiet

- instrumentable
- radio transparent



A typical shower initiated by a 100 PeV neutrino creates a total number of charged particles at shower maximum of ~ 2  $10^7$ . The net charge is thus ~ 4  $10^6$  e Since the radiated power for Cherenkov emission grows quadratically with the charge of the emitter, the coherent power in the cm-to-m wavelength regime is ~ $10^{13}$  times greater than the single-charge emission. (Gorham et al Phys. Rev. Lett.)

#### Askaryan mechanism

- Coherent up to GHz frequencies (small, but dense showers)
- Different geometry and polarization than geomagnetic mechanism

















FIG. 1 (color). Top: Side view schematic of the target and receiver arrangement in ESA. Bottom: Perspective view of the setup, showing the key elements.



### SLAC T486 RESULTS

The showers were produced by 28.5 GeV electrons in 10<sup>-11</sup> s bunches of typically 10<sup>9</sup> particles.
The total composite energy of 3 . 10<sup>19</sup> eV, with a total of ~
2 . 10<sup>10</sup> el. at max dev.



FIG. 3 (color). Left: Field strength vs frequency of radio Cherenkov radiation in the T486 experiment, for several different antennas used, including a theoretical curve [9]. Right: Pulse power vs total shower energy (number of particles × mean energy/particle), curve is for completely coherent radio Cherenkov emission.

### Acoustic detection

#### Why acoustic detection ?

•High energy neutrinos interact with matter (1% probability in 1 km of water at 10<sup>20</sup>eV).

•Energy is shared between a quark ad a lepton; on the average 80% to the lepton and 20% to the hadronic shower (≈ Joule for 10<sup>20</sup>eV neutrinos).

•The hadronic shower is confined (typically a 2 cm. Radiux x 20 m length cylinder) and produces detectable pressure waves.

• the acoustic front has a typical disk shape('pancake'), the pressure wave is bipolar,  $\approx$  50 µs period, amplitude  $\cong$  mPa or higher depending on the initial energy and distance

•The signal propagates for several km (attenuation lenght of 1km at 20 kHz)

at high energies ( ≥ 10<sup>18</sup>eV) the acoustic detection may be an alternative to Cerenkov light detection (attenuation lenght ≅ 50 m)

## **Acoustic Detection Principle**





### **ACOUSTIC ATTENUATION**

#### **Hydrophone Calibration at ITEP**

ITEP & ROMA (University)



### ACOUSTIC TEST ON P-BEAM



#### Scheme of the acoustic experiment

lake Baikal

#### Scintillator detectors (EAS trigger)





#### An example of detected sound (hydrophones H1-H4,G7,G8)



### Neutrino detectors

- Cherenkov in ice/water 10<sup>13</sup> 10<sup>15</sup> eV – Towards km<sup>3</sup>
- Horizontal showers
- Radio inclined showers / geo-synchrotron
- Radio Askaryan / Cherenkov
   Ice/space, ice/ground, moon, salt....
- Acoustic

•

### GAMMA RAY PRIMARIES

DIRECT ( $E_{\gamma} < 50 \text{ GeV}$ )

&

GROUND BASED (E  $_{\gamma}$  > 50 GeV)

### EGRET

#### Energetic Gamma-Ray Experiment Telescope



### EGRET

#### **Energetic Gamma-Ray Experiment Telescope**





#### Point-spread function

#### (angular resolution)



Effective detection area = f(E



#### High energy region (30 MeV-100 GeV)

- γ-ray conversion into e<sup>+</sup>e<sup>-</sup> pair
- Tracker
  - Converting material +
  - detection planes
- $\rightarrow$  direction measurement
- Calorimeter
- $\rightarrow$  energy measurement
- Anticoincidence dome
- → remove charged particles



The GLAST Large Area Telescope (launched in 2008)
#### High energy region (30 MeV-100 GeV)

- γ-ray conversion into e<sup>+</sup>e<sup>-</sup> pair
- Tracker
  - Converting material +
  - detection planes
- $\rightarrow$  direction measurement
- Calorimeter
- ightarrow energy measurement
- Anticoincidence dome
- ightarrow remove charged particles



The GLAST Large Area Telescope (launched in 2008)

# Old and new detectors

| Instrument         | EGRET           | AGILE            | GLAST                          |
|--------------------|-----------------|------------------|--------------------------------|
| Energy range       | 2 MeV-30 GeV    | 30 MeV-50 GeV    | 10 MeV-300 GeV                 |
| Field of view      | 0.20 sterad.    | 2 sterad.        | 2.4 sterad.                    |
| Angular resolution | 1.5°<br>@ 1 GeV | 0.6°             | 0.12° @ 10 GeV<br>4° @ 100 MeV |
| Source<br>location | 5' to 10 '      | 30 '<br>@300 MeV | 0.4 '                          |
| $\Delta E/E$       | 10 %            | 100 %            | 10 %                           |
| Dead time          | 0.1 s           | < 100 µs         | < 100 µs                       |

γ-ray astronomy above 100 GeV:
 Cherenkov light technique
 Very low fluxes:

e.g. Crab nebula: flux( E > 1 TeV) = 2 × 10<sup>-11</sup> cm<sup>-2</sup> s<sup>-1</sup>

Large effective detection areas (>30 000 m<sup>2</sup>) needed

 $\rightarrow$  Back to the ground

 Use the atmosphere as a huge calorimeter and detect γ-ray-induced atmospheric showers through Cherenkov light:



Light pool on the ground: 300 m diameter

### Atmospheric Cherenkov techniques

- Only working by clear moonless nights
  → Duty cycle ≈ 10 % or less
- Detection area ≈ size of the Cherenkov light pool on the ground
  - Cherenkov angle ≈ 1° at ground level
  - Light pool diameter  $\approx$  300 m at 2000 m a.s.l.
- Very brief flash of Cherenkov light (a few nanoseconds) → need fast photodetectors
- $E_o f(r)Aqe > kV B Ω Δt A qe$  →  $E_o^{th} \sim kV B Ω Δt / A qe$ → need large light collectors

## Numerically:

- $E_of(r) A qe > k V B \Omega \Delta t A qe$
- $A > k^2 B \Omega \Delta t / (qe E_o^2 f(r)^2)$
- $B = 10^{12}$  ph m<sup>-2</sup>s<sup>-1</sup>sr<sup>-1</sup>
- $\Omega = \pi \theta^2$  ~  $10^{-3}$  sr (1 degree)
- $\Delta t = 10^{-8} s$
- qe = 0.2
- K = 3
- $E_o f(0) \sim 1 \text{ ph m}^{-2}$  @ 100 GeV
- A (100 GeV) > 10  $10^{12}$   $10^{-3}$   $10^{-8}$  / 0.2 m<sup>2</sup> ~ 500 m<sup>2</sup>
- => R ~ 10 m



#### Present imaging atmospheric telescopes

| Experiment      | Number of telescopes | Reflector<br>diameter (m) | Site      |
|-----------------|----------------------|---------------------------|-----------|
| CANGAROO<br>III | 4                    | 10                        | Australia |
| HESS I          | 4                    | 12                        | Namibia   |
| MAGIC           | 1                    | 17                        | Canaries  |
| VERITAS         | 4                    | 12                        | Arizona   |

A gamma-ray induced electromagnetic shower

On average rotational symmetry

Small transverse momenta (Almost) no muons Essentially

e+ e- and secondary γrays



## A proton-induced hadronic shower



Presence of muons from meson decays

(in red on the figure)

=> HIGH ANGULAR RESOLUTION => SMALL FIELD OF VIEW => TRACKING DETECTORS

### Imaging telescopes: the cameras

| Experiment   | Number of pixels | Pixel size  | Field of<br>view Ø |
|--------------|------------------|-------------|--------------------|
| CANGAROO III | 552              | 0.115°      | <b>3°</b>          |
| HESS I       | 960              | 0.16°       | 5°                 |
| MAGIC        | 396+180          | 0.08°-0.12° | 4°                 |
| VERITAS      | 499              | 0.15°       | 3.5°               |

# Goodbye!

# High-definition cameras (H.E.S.S.)

- 960 phototubes ...
  ... equipped with light collectors (Winston cones).
- Trigger electronics within the camera (overlapping sectors; majority logic).
- Readout from analogue memories



- (1 GHz sampling) within the camera.
- Analogue signal integrated over 12 ns  $\rightarrow$  ADC

### Stereoscopic analysis (e.g. HEGRA, H.E.S.S.)

- Direct measurement of the γ-ray origin in the field of view (important for extended sources)
- Direct measurement of the impact on the ground (important for energy measurement)





### Stereoscopic analysis (e.g. HEGRA, H.E.S.S.)

- Showers viewed by several telescopes
- Considerable hadronic rejection (> 1000)
   Use constraint of rotational symmetry
- Much better angular resolution
- Better energy resolution



# H.E.S.S. angular resolution

Angular radius around the source containing 68% of reconstructed origins vs. energy and zenith angle ζ



With cutoff on angular distance from the centre of the field of view