Atmospheric fluorescence

Fernando Arqueros Universidad Complutense de Madrid

Outline

Introduction

- Features of air-fluorescence radiation
- The fluorescence technique for the detection of UHECR
- The atmospheric fluorescence
 - Molecular excitation by electron impact
 - Radiative and collisional de-excitation
 - Dependence on atmospheric parameters
- The fluorescence yield
 - Definitions
 - The effect of secondary electrons
- Experimental techniques and results

🔷 In Summary ..

Introduction

Cosmic Rays – Atmospheric Fluorescence What do they have to do?

- An ultra-high energy cosmic ray (>10¹⁸eV) generates a shower in the atmosphere containing a large number of charged particles, mainly electrons.
- Electrons lose energy by collision with atmospheric molecules. A very small fraction of these collisions excite/ionize nitrogen molecules to some specific levels which de-excite giving rise to UV light.
- Appropriate telescopes can detect this fluorescence light.

HiRes, Auger, TA, ASHRA, JEM-EUSO, OWL

Features of the air-fluorescence radiation

- Near UV (300 400 nm).
- Emitted isotropically.
- Illustratively a 10^{20} eV shower = a 100 W light bulb moving at the speed of light.

Detection of air showers using the fluorescence technique

Fluorescence telescopes "see" the UV light emitted by N_2 molecules excited by shower electrons

Measure of the EM energy of an air-shower using the fluorescence technique

Y(P,T,h) is measured in lab experiments

International effort to increase the accuracy of the fluorescence yield

5th Fluorescence Workshop, El Escorial, Madrid – September 2007 http://top.gae.ucm.es/5th_FW/

- Proceedings to be appear in Nucl. Instr. Methods A
- A summary of the workshop is already available at <u>arXiv:0807.3844</u>

Generation of air-fluorescence

Molecular excitation by electron impact

Radiative de-excitation

F. Arqueros - 3rd School on Cosmic Rays and Astrophysics, Arequipa Peru (2008)

Radiative de-excitation

First Negative System (1N) $N_2^+ (B^2 \Sigma_u^+ \rightarrow X^2 \Sigma_g^+)$ Second Positive System (2P) $N_2 (C^3 \Pi_u \rightarrow B^3 \Pi_g)$

F. Arqueros - 3rd School on Cosmic Rays and Astrophysics, Arequipa Peru (2008)

Dependence on atmospheric parameters

Pressure dependence - Collisional de-excitation (quenching)

Excited nitrogen molecules may de-excite by collision with other molecules in the environment.

 $P = P' \implies$ collisional rate = radiative rate P' characteristic pressure Relative $\frac{1}{P'} = \sum_{i} \frac{f_i}{P'_i}; \quad P_i' = \frac{kT}{\tau_r} \frac{1}{\sigma_{Ni} v_{Ni}} \overset{\text{relative}}{\swarrow}$ $I_{vv'}(P) \propto \frac{P}{1 + \frac{P}{P'}}$ Air components lifetime 🔨 N_2 , O_2 , H_2O , Ar... Collisional cross section 337 nm ⁻luorescence intensity 10 At high pressure P >> P' p'=151.7 hPa fluorescence intensity is 7.5 nearly P independent Fluorescence Intensity vs pressure provides a 2.5 measure of P' Pressure

Nagano et al. (2004)

Apparent Lifetime

AIRLIGHT (5th FW, EI Escorial 2007)

Lifetime of the population decreases with pressure P' can be measured from $1/\tau$ versus P

Temperature dependence

$$\frac{1}{P'} = \sum_{i} \frac{f_{i}}{P'_{i}}; \quad P_{i}' = \frac{\mathbf{k}T}{\tau_{r}} \frac{1}{\sigma_{Ni} \overline{\nu}_{Ni}}$$
$$-\overline{\nu}_{Ni} = \sqrt{\frac{8kT}{\tau_{r}}}$$

Relative velocity grows with \sqrt{T}

 $\pi\mu$

 $\sigma_{Ni} \propto T^{\alpha}$

Quenching cross section depends on the velocity of the colliders

F. Arqueros - 3rd School on Cosmic Rays and Astrophysics, Arequipa Peru (2008)

The fluorescence yield

The fluorescence yield - Definitions

 $\epsilon_{vv'}$ [m⁻¹] Number of photons per unit electron path legth.

 $\frac{\varepsilon_{vv'}}{\rho} = \frac{A_{vv'}}{1 + P / P_v'} \qquad \text{Number of photons per unit column density (i.e. per gcm^{-2})} \\ A_{vv'} = \varepsilon_{vv'} / \rho \text{ in the absence of collisional quenching}$

Both $\varepsilon_{vv'}$ and $Y_{vv'}$ are measured in the laboratory

 $Y_{vv'}$ [Mev⁻¹] Number of photons per unit deposited energy.

More useful for calorimetric applications

$$\frac{\mathrm{d} N_{ph}}{\mathrm{d} X} = Y(P, T, h) \frac{\mathrm{d} E_{dep}}{\mathrm{d} X} \qquad \qquad Y_{vv'} = \frac{Y_{vv'}^0}{1 + P / P_v'}$$

Relationship between $Y_{vv'}$ and $\varepsilon_{vv'}$

$$Y_{vv'} = \frac{\mathcal{E}_{vv}}{\left(\mathrm{d} E / \mathrm{d} x \right)_{\mathrm{dep}}}$$

Secondary electrons

Fluorescence is mainly produced by secondary electrons ejected in ionization processes

Both fluorescence and deposited energy must be measured/computed in the same volume

Very important in lab experiments. Fluorescence from small volumes

E [photons/m] vs.Y [photons/MeV]

Deposited energy is not equal to the energy loss for small volumes

Experimental techniques and some results

Experimental techniques

- Fluorescence measurement
 - Monochromators, filters
 - Photon counting: PMTs, HPDs Relationship between $Y_{\mu\nu}$ and $\varepsilon_{\mu\nu}$
- Gas properties: P, T, h, ...

Absolute calibration: number of <u>photons</u>, number of electrons, deposited energy

- $Y[MeV^{-1}]$ or $\epsilon_{vv'}[m^{-1}]$
- Narrow (v-v') or wide spectral wavelength (e.g. 300 400 nm)

Fluorescence yield versus electron energy

Assumption: Fluorescence yield is independent on electron energy,

Theoretical demonstration using a MC simulation which follow electrons down to a few eVs

AIRFLY (5th FW, EI Escorial 2007)

APS	6 – 30 keV
Argonne Wakefield Accelerator +	
Van de Graaff	0.5 – 15 MeV
BTF Frascati	50 – 420 Me\

Proportionality (\pm 5%) <u>inside</u> E intervals. <u>Relative</u> calibration

MACFLY Astropart. Phys. (2007)

FLASH (THICK TARGET) Astropart. Phys. (2006) 5th FW, El Escorial 2007

Absolute calibration with Rayleigh scattering

Absolute calibration with Rayleigh scattering

Absolute value of the Fluorescence Yield

Experiment	E [MeV]	337 nm		Wide spectrum	
		m ⁻¹	MeV ⁻¹	m -1	MeV -1
AIRFLY (prel.)	350		4.12		
FLASH	2.85×10 ⁴				20.8
MACFLY	1.5 - 5.0×10 ⁴				17.6
Nagano et al.	0.85	1.02	5.03	3.81	
Lefeuvre et al.	0.85			4.23	
AIRLIGHT	0.25 – 2.0		5.68		
Kakimoto	1.4 - 10 ³		5.7		

In summary

- Detection of air fluorescence provides a very useful tool for UHECRs detection.
 - Calorimetric measurement of the primary energy.
- ▶ The processes leading to the generation of fluorescence are well known.
 - The role of secondary electrons is very important
- Fundamental assumption: Fluorescence intensity proportional to deposited energy.
 - Theoretical and experimental tests.
- Accurate measurements of the dependence of the fluorescence yield on atmospheric parameters are being carried out. P'(T, h).
- Absolute measurements with uncertainties below 10% are being published.
 - Some disagreements.

More experimental results needed.

Atmospheric Fluorescence

Detailed information:

5th Fluorescence Workshop, El Escorial, Madrid – September 2007 http://top.gae.ucm.es/5th FW/

- Proceedings to be appear in Nucl. Instr. Methods A
- A summary of the workshop is already available at arXiv:0807.3844