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Two nucleon removal - what are useful regimes?
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D. Bazin et al., MSU preprint, submitted
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Complications of 2 neutron removal reactions
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J.A. Tostevin, submitted
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Two neutron knockout from neutron rich nuclei
e.g. 23O →21O (RIKEN measurement at 72A MeV on 12C)

σ = 82(25) mb - is large!!-2n -2n 

σ-2n = 6σstrip(02) + 15σstrip(52) = 14 mb σ-2n = 6σstrip(02) + 15σstrip(52) = 14 mb 

but σsp(p1/2) = 12 mb,     σsp(p3/2) = 11 mb
σ-n(p) = 2 σsp(p1/2) +4 σsp(p3/2)  = 68 mb

leading to the 22O continuum - n evaporation

2s1/2

n

1d5/2

1p1/2

-2.8
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-12.0
-16.8 1p3/2

σ = 82(25) mb - is large!!

σstrip(02) = 0.9 mb
σstrip(22) = 0.6 mb

Shell model - 1 unit of p-strength leads to bound 22O

σ-n(p) = 57 mbσ-n(p) = 57 mb
Measurement: Kanungo et al, PRL 88 (2002) 142502
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Two proton knockout from neutron rich nuclei

40
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uncorrelated
2p removal

calculated
is 1.8 mb

D. Bazin et al., MSU preprint, submitted
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Two proton knockout - a useful option?

D. Bazin et al., MSU preprint, submitted.

2p 
knockout
(~1mb)

production
rate R

30Ne

could gain
x100 rate

production
rate R/1000

30Ne32Mg

e.g.Coulex
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Improving the eikonal approximation

J.M. Brooke et al., Phys. Rev. C 59 (1999) 1560

 |  )(bS )(bS  |(b)S vvcc 〉φφ〈= αβαβ

(kr)}H S(kr)2){H((r)u +− −→ llll i

dashed - eikonal
solid - exact

eikonal S(b) are
poor for lower
energy and light
particle - small k

So, use instead the exact Sl,
analytically continued to non-
integer l, or b, in Sαβ

So, use instead the exact Sl,
analytically continued to non-
integer l, or b, in Sαβ
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Beyond the eikonal approximation

Improved S

Improved S

J.A. Christley et al., Nucl. Phys. A 624
(1997) 275

J.M. Brooke et al., Phys. Rev. C 59
(1999) 1560
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Nucleon removal cross sections also corrected

Improved S
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Beyond the adiabatic approximation

continuum of
Hp is assumed
degenerate with
a new energy ε
which is a better  
representation of
the states 
excited

The adiabatic approximation
treats all break-up
configurations, but with no
explicit reference to         ,
by solution of: 
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Quasi-adiabatic type approximations

0)( E]H) U([T )(
p =Ψ−++ + RrRr KR ,,

Using the non-adiabatic few-body model equation

buel Ψ+Ψ
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inhomogeneous
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source term
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necessary
Important corrections in transfer reactions which are sensitive to
near- and far-side interference effects
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Non-adiabatic - but trajectory based
Time-dependent (finite difference) solution of the valence particle
motion - assuming the heavy core, or c.m., follows a trajectory: [See:
Bertsch and Esbensen, Baur and Typel, Suzuki, Melezhik and Baye]

Solved on an (r,t) grid
and care is needed.
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Not exact - but non-adiabatic
Dynamics of VcT is not included
and no energy transfer/sharing
between core and internal motion.
For heavy targets - Coulomb path
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The time-dependent approach - observables
absorptive effects of target have
to be put in ‘by hand’ - restricting
impact parameters b to values 

b > bmin ≈ RT+Rc
Only absorption/loss of flux in the
equation is due to VvT and so

t),()V(H
t vTp rψ+=

∂
ψ∂

hi

as t →−∞ )(t),( 0 rr φ→ψ

t →+∞ )T(t),( 0f ,rr ψ→ψ

At an impact parameter b then (for a neutron valence particle):

neutron removal probability

neutron stripping probability

diffractive break-up 
probability

with cross sections
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Beyond the adiabatic limit - the CDCC
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M. Kamimura et al, Prog Theor Phys (Suppl) 89 (1986), 1
N.Austern et al., Phys. Rep. 154 (1987), 125

Coupled channels solution of break-up 
by discretisation of the continuum 
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Properties of CDCC bin (basis) states
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rbinrUncertainty principle:
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chosen carefully

Uncertainty principle:
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chosen carefully
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Coupled channels model space is needed

Example of a
coupled channel
(CDCC) model
space for 15C
break-up on a 
9Be target at 
E= 54A MeV
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spin-parity 15C excitations
J.A. Tostevin et al, PRC 66 
(2002) 024607
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Residue parallel momentum distributions

s

p

d

T. Aumann et al. PRL 84
(2000) 35

There is asymmetry in data?

Calculations of
10Be residue p|| 
momentum
distributions
following neutron
knockout from a
11Be beam at 
60A MeV/, with 
no coincident
photon - 10Be in
its ground state.
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Momentum distributions from the CDCC

54A MeV

• eikonal

P
14C

CDCC and eikonal
calculations agree
in most forward
directions, but 
CDCC develops
an asymmetry for
deflected residues

9Be (15C,14C(gs)) XJ.A. Tostevin et al, PRC 66 (2002) 024607
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Non-adiabatic and non-eikonal effects for 15C

eikonal

14C

00+

1- 6.09

Coupled 
channels
(CDCC)

109±13 mb

22±3 mb

2s1/2

1p3/2

9Be (15C,14C(Iπ)) XJ.A. Tostevin et al, PRC 66 (2002) 024607
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Core fragment differential cross sections

P
14C

these yields
almost entirely 
due to diffractive 
dissociation

9Be (15C,14C(gs)) X J.A. Tostevin et al, PRC 66 (2002) 024607
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Coupled channels and Coulomb break-up

first-order
calculation

T. Nakamura et al, PRL 83 (1998) 1112

19C + Pb → 18C+n+X
E= 67A MeV Coulomb 
dominated

( )riφ̂
ji |)U(| φφ ˆ,ˆ Rr

and associated
couplings 
of very long range

Do CDCC calculations
converge in the case of
Coulomb couplings?

∆k=ki−ki−1 must be small
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Convergence is not proven!

…...

G.Baur and H. Rebel, J. Phys. G 20 (1994), 1
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8B - a weakly bound proton nucleus

7Be
8B θ
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3/2− -0.137

8B8B

Emax

Convergence with Emax
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CDCC can reproduce data at low energy

J.A. Tostevin et al., Phys Rev C 63 (2001) 024617
J. Kolata et al., Phys Rev C 63 (2001) 024616

DW

CDCC

7Be

8B 40°

q=4, l<5

q=3, l<4
q=2, l<4

no
CC

8B + 57Ni → 7Be + X, 25.8 MeV
(Notre-Dame)

8B + 57Ni → 7Be + X, 25.8 MeV
(Notre-Dame)



NUPP Summer School, Victor Harbor, SA    20-24th January 2003

25

Double differential cross sections for breakup

cc
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ddE
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8B + 57Ni →
7Be + X

25.8 MeV

8B + 57Ni →
7Be + X

25.8 MeV

J. Tostevin et al, 
Phys Rev C 63
(2001) 024617

J. Kolata et al., 
Phys Rev C 63 
(2001) 024616
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Recoil limit of the adiabatic few-body model

)(rV
0)(rV

cTcT

vTvT ≈

dominates

r

c
T)(RV cTcT

R

v K

Removal of v is by core recoil
or shake-off mechanism
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closed-form solution in adiabatic approximation

and provides limit against
which model calculations
can be tested - e.g. CDCC

distorted wave for point 
projectile scattering from VcT

and provides limit against
which model calculations
can be tested - e.g. CDCC

R.C. Johnson et al., PRL 79 (1997) 2771



NUPP Summer School, Victor Harbor, SA    20-24th January 2003

27

Application to elastic scattering of composites
 V )(|V |)(T )(
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R.C. Johnson et al., PRL 79 (1997) 2771

49.3 A MeV

composite scatteringcore scattering
fixes VcT
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Inelastic scattering, similarly

〉χ〉〈φφα〈=〉Ψφ〈= +)(
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prediction point

2
10

inel d
d|)(F

d
d

Ω
σ

α=
Ω
σ Q|

no measurement as of yet

elastic scattering
cross section of
point projectile
by potential felt
by the core c

elastic scattering
cross section of
point projectile
by potential felt
by the core c



NUPP Summer School, Victor Harbor, SA    20-24th January 2003

29

Coulomb break-up of the deuteron
J.A. Tostevin et al., Phys. Rev. C 57 (1998) 3225
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Exact 3-body amplitude in the adiabatic limit
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includes effects of long range 
Coulomb couplings without 
partial wave decomposition 
or truncation
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Subtract point Coulomb amplitude 
and invert to give SL to compare with 
that calculated using CDCC, in the 
limit that Hp  → ε0
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Coupled channels for Coulomb break-up?

Nuclear +
Coulomb Coulomb

only

CDCC(Ad)
• • • • • • • •

Adiabatic

Coupled channels (CDCC) calculations with all channel energies 
equal to that of the elastic channel 

Coupled channels (CDCC) calculations with all channel energies 
equal to that of the elastic channel 
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Messages to take away …...

Weak beams of rare weakly bound nuclei pose challenges
to reaction theories – continuum of states, non-perturbative

Approximate schemes are being developed which allow
sp spectroscopy on beams with of order 1pps – show
Shell Model ideas are working away from stability

Apparently simple problems (the Coulomb interaction and
its induced break-up) remain to be fully resolved.

Insight is being gained in the light nucleus domain and
extended rapidly to heavier systems as new facilities are 
planned and commissioned (NSCL, RIKEN, GSI, RIA ..)
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thanks for your attention 
and hospitality …..

- and also for 
the cricket!
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