Probing the structures of exotic and halo nuclei NUPP School, Victor Harbor, SA

20-24th January 2003

Jeff Tostevin Department of Physics School of Electronics and Physical Sciences University of Surrey UK

The neutron dripline in light nuclei

The semi-classical S-matrix - S(b)

Eikonal S-matrix in the point particle case

$$\Psi_{\mathbf{k}}(\mathbf{r}) = e^{i\mathbf{k}\cdot\mathbf{r}} \omega(\mathbf{r})$$
So, after the interaction
and as $z \to \infty$

$$\Psi_{\mathbf{k}}(\mathbf{r}) = \mathbf{S}(\mathbf{b}) e^{i\mathbf{k}\cdot\mathbf{r}}$$
Eikonal approximation to the
s-matrix S(b)

$$S(\mathbf{b}) = \exp\left\{-\frac{i}{\hbar v}\int_{-\infty}^{\infty} dz' V(\mathbf{r}')\right\}$$
Moreover, the structure of the
theory generalises to few-body projectiles

 \cup III

Adiabatic (sudden) model for few-body projectiles

Freeze internal co-ordinate r then scatter c+v from target and compute $f(\theta, r)$ for all required <u>fixed</u> values of r

Physical amplitude for breakup to state $\phi_k(\mathbf{r})$ is then,

 $\mathbf{f}_{k}(\boldsymbol{\theta}) = \langle \phi_{k} | \mathbf{f}(\boldsymbol{\theta}, \mathbf{r}) | \phi_{0} \rangle_{\mathbf{r}}$

Achieved by replacing $H_p \rightarrow -\varepsilon_0$ in Schrödinger equation

Adiabatic approximation - time perspective

Eikonal solution of the few-body model

Few-body eikonal model amplitudes

So, after the collision, as $Z \to \infty$ $\omega(\mathbf{r}, \mathbf{R}) = S_c(b_c) S_v(b_v)$ $\Psi_{\mathbf{K}}^{\text{Eik}}(\mathbf{r}, \mathbf{R}) \to e^{i\mathbf{K}\cdot\mathbf{R}} S_c(b_c) S_v(b_v) \phi_0(\mathbf{r})$

with S_c and S_ν the eikonal approximations to the S-matrices for the independent scattering of c and v from the target - the dynamics

Take stock of things - where have we got to?

Wish to test spectroscopy with <u>weakly bound</u> systems - coupling to the continuum is strong - <u>few-body models</u>

<u>Single particle properties</u> - direct reactions with minimal rearrangement of other than active nucleon(s) needed

<u>Adiabatic approximation</u> - high E, small ε , slow internal motions - will be increasingly accurate as E increases

<u>Eikonal</u> few-body models - make clear the role of the dynamics and the structure input required - <u>transparent</u>

$$S_{\alpha\beta}(b) = \langle \phi_{\beta} | S_{c}(b_{c}) S_{v}(b_{v}) | \phi_{\alpha} \rangle$$

<u>Approximate description</u> - accuracy will need to be tested as and when data are good enough to warrant

Dynamics and structure - formal transparency

Independent scattering information of c and v from target

$$S_{\alpha\beta}(b) = \langle \phi_{\beta} \mid S_{c}(b_{c}) S_{v}(b_{v}) \mid \phi_{\alpha} \rangle$$
structure

Use the best available few- or many-body wave functions

More generally,

$$S_{\alpha\beta}(b) = \langle \phi_{\beta} | S_1(b_1) S_2(b_2) \dots S_n(b_n) | \phi_{\alpha} \rangle$$

for any choice of 1,2 ,3, n clusters for which a realistic wave function ϕ is available

Four and six-body reaction calculations

Reaction observables for composite systems

Elastic S-matrix is $S_p(b) = \langle \phi_0 | S_c(b_c) S_v(b_v) | \phi_0 \rangle$ so the total elastic and reaction cross sections are

$$\sigma_{\rm el} = \int d\mathbf{b} |1 - S_{\rm p}(\mathbf{b})|^2$$

$$\sigma_{\rm R} = \int d\mathbf{b} \left[1 - |S_{\rm p}(\mathbf{b})|^2 \right]$$

The latter expression includes breakup effects to all orders and is being used extensively to study the (structure) effects of nuclear halos on reaction cross sections σ_R - these few-body breakup effects are very important.

J.A. Tostevin and J.S. Al-Khalili, PRC 59 (1999) R5

Diffractive dissociation of composite systems

The total cross section for removal of the valence particle from the projectile due to the break-up (or diffractive dissociation) mechanism is the break-up amplitude, summed over all final continuum states

$$\sigma_{\text{diff}} = \int d\mathbf{k} \int d\mathbf{b} \left| \langle \phi_{\mathbf{k}} \mid S_{c}(\mathbf{b}_{c}) S_{v}(\mathbf{b}_{v}) \mid \phi_{0} \rangle \right|^{2}$$

but, using completeness of the break-up states

can (for a weakly bound system with a single bound state) be expressed in terms of only the projectile ground state wave function as:

$$\sigma_{\rm diff} = \int d\mathbf{b} \left\{ \langle \phi_0 \mid \mid S_c \mid S_v \mid^2 \mid \phi_0 \rangle - \mid \langle \phi_0 \mid S_c \mid S_v \mid \phi_0 \rangle \mid^2 \right\}$$

If 🥿

Absorptive cross sections - target excitation

Related equations exist for the differential cross sections, etc.

Use of formalism for single-nucleon knockout

Events contributing will be both stripping and break-up both of which leave a mass A residue in the final state

NUPP Summer School, Victor Harbor, SA 20-24th January 2003

UniS

Contributions from different impact parameters

Example for orientation - extreme sp model

Single neutron removal from ${}^{23}O \equiv [1d_{5/2}]^6 [2s_{1/2}]$

<u>Measurement at RIKEN</u> [Kanungo et al PRL **88** ('02) 142502] at 72 MeV/nucleon on a ¹²C target; $\sigma_{-n} = 233(37)$ mb

Of course we need to do this carefully

Energ	y (MeV)	I^{π}	l	C^2S	$\sigma_{sp} \ ({ m mb})$	σ_{1n} (mb)
	0	0^{+}	0	0.797	64.2	51.2	
•	2^+	2	2.130	22.8	48.6		
	0^+	0	0.115	32.0	3.7		
•	4.83	3^+	2	3.079	20.4	62.9	
Γ	5.32		1	0.851	17.8	15.2	n
	5.93		1	0.332	16.9	5.6	Ρ
	6.50		2	0.242	18.0	4.4	
				Sum:	191	_	
Shell	²² O fii	nal			datum 2	233(37)mb	2
model (Brown	states b n-thres	below hold		♦ [d _{5/2}	$x s_{1/2}]_J \left\{ \begin{array}{l} 0 \\ 0 \\ 0 \end{array} \right\}$	C ² S(2 ⁺)=2 C ² S(3 ⁺)=3	2.5 3.5

NUPP Summer School, Victor Harbor, SA 20-24th January 2003

I Inis

Measurement of the momentum components

increasing

 S_v

increasing

 p_{\parallel}

 p_{\parallel}

Systematic of momentum content in p-shell

An s-state ground state in ²⁸P?

Proton halo states in phosphorus isotopes?

	S _n [MeV]	σ(tot,exp) [mb]	$\sigma(exp)$ [mb]	σ (gs,theo) [mb]
$ ^{26}\mathbf{P}$	0.14 (0.20)	72 (13)	40 (14)	36
$27 \overline{P}$	0.90(0.04)	74 (11)	22 (8)	23
²⁸ P	2.07	70 (11)	21 (5)	23

Navin et al. PRL **81** (1998) 5089

Residue parallel momentum distributions

Calculations of ¹⁰Be residue p_{II} momentum distributions following neutron knockout from a ¹¹Be beam at 60A MeV/, with no coincident photon - ¹⁰Be in its ground state.

T. Aumann et al. PRL 84 (2000) 35

Structure information - nucleon formfactors

 Φ_{c} in Φ_{A+1} is

Nucleon removal from Φ_{A+1} will leave mass A residue in the ground or an excited state - even in extreme sp model

More generally: amplitude for finding nucleon with sp quantum numbers ℓ , *j*, about core state

$$\mathbf{F}_{\ell j}^{\mathbf{c}}(\mathbf{r}_{c}) = \langle \mathbf{r}, \Phi_{\mathbf{c}} | \Phi_{\mathbf{A}+1} \rangle, \ \mathbf{S}_{\mathbf{N}} = \mathbf{E}_{\mathbf{A}+1} - \mathbf{E}_{\mathbf{c}}$$

Usual to write

A+1

$$d\mathbf{r} |F_{\ell j}^{c}(\mathbf{r})|^{2} = C^{2}S(\ell j) \begin{cases} Spectroscopic \\ factor - occupancy \\ of the state \end{cases}$$

$$\mathbf{F}_{\ell j}^{\mathrm{c}}(\mathbf{r}) = \sqrt{\mathbf{C}^{2} \mathbf{S}(\ell j)} \,\phi_{\ell j}^{\mathrm{c}}(\mathbf{r}); \quad \int d\mathbf{r} \,|\phi_{\ell j}^{\mathrm{c}}(\mathbf{r})|^{2} = 1$$

with $\phi(\mathbf{r})$ calculated in a potential model (Woods-Saxon)

Adiabatic spectator core model of knockout

Single-neutron knockout from ¹⁷C

Single-neutron knockout spectroscopy of ¹¹Be

Single-neutron knockout spectroscopy of ¹¹Be

Partia	l cro	oss secti	ions in	mb to	the fin	al states	I^{π} in ¹⁰ Be		
I^{π}	l	S	σ^{strp}_{sp}	σ^{diff}_{sp}	σ^{coll}	σ^{theo}	σ^{exp}		
0+	0	0.74	125	98	$10^{a)}$	172	203(31)		
2^+	2	0.18	36	14	$11^{b)}$	17	16(4)		
1-	1	0.69	25	9		23	17(4)		
2-	1	0.58	25	9		20	23(6)		
Σ						224	259(39)		
^{a)} Coulomb dissociation									

^{*b*} Rotational excitation, Spectroscopic factor is that of the 0⁺ state

N=8 neutron shell closure (magic no.) in ¹²Be?

N=8 neutron shell closure in ¹²Be?

Spectroscopic factors for $^{12}\text{Be} \rightarrow ^{11}\text{Be+n}$

j [#]	E (MeV)	σ_{exp} (mb)	$\sigma_{ m sp}$ (mb)	S _{exp}	S^*_{exp}	WBT	S _{th} WBT2
1/2+	0	32.0 ± 4.7	75.9	0.42 ± 0.10	0.53 ± 0.13	0.51	0.69
1/2-	0.32	17.5 ± 2.6	47.2	0.37 ± 0.10	0.45 ± 0.12	0.91	0.58
$5/2^{+}$	1.8					0.40	0.55

The ground state structure of ⁸B

gamma coincidences, sees a (15%) branch from an excited $^{7}Be(1/2^{-})$ core component in the ^{8}B wave function.

D.Cortina-Gil et al., Phys Lett B 529 (2002) 36

Systematics of spectroscopic factors

Eikonal few-body reaction theory and experimental data

Absolute spectroscopic factors using knockout

$A^{-1}Z$	E _B MeV/ nucleon	<i>E</i> *	$\sigma_{sp}(\mathbf{r})$	nb) ^a Diffr.	σ_{th} (mb)	σ_{exp} (mb)	R_s		B.A Brown et (2002) 067	al. PRC 65 I601(R)
								L		
¹¹ B	250	а	21.9	1.8	100.5	65.6(26) ^b	0.65(3)			(e,e'p)
4 5 00	1050	a	20.8	1.9	96.1	48.6(24) ^c	0.51(3)		$\rightarrow 0 = 2(2)$	0 51(2)
15.96	2100	a	20.6	2.0	96.1	53.8(27) ^c	0.56(3)		-0.55(2)	0.51(3)
¹¹ C	250	a	21.4	1.7	98.2	56.0(41) ^b	0.57(4)			
	1050	a	20.2	1.8	93.4	44.7(28) ^c	0.48(3)		$\rightarrow 0.49(2)$	
18.72	2100	a	20.1	1.9	93.3	46.5(23) ^c	0.50(3)		0.40(2)	
¹⁵ N	2100	0	15.40	1.77						
40.40		6.324	12.95	1.30						
12.13	3	Sum			80.2	54.2(29) ^b	0.68(4)		0.68(4)	0.67(5)
¹⁵ O	2100	0	14.63	1.61						
		6.176	12.54	1.23						
15.66)	Sum			76.9	42.9(23) ^c	0.56(3)		→ 0.56(3)	

NUPP Summer School, Victor Harbor, SA 20-24th January 2003

Uniss

Absolute spectroscopic factors for exotics?

E_B MeV/nucleon	E* MeV	c Str.	r _{sp} (m Dif.	b) Cou.	σ_{th} (mb)	σ. (mb)	R_s		B.A. Brown et al. PRC 65 (2002) 061601(R)
142	0	59.8	26.6	4.0	107.1			1	
	0.429	53.6	20.6	1.5	19.0				⁹ Be(⁸ B, ⁷ Be)X
	Sum:				126.1	109(1) ^b	0.86(1)		
285	0	57.3	11.9	2.6	85.0				
	0.429	51.8	9.2	1.0	15.6				
	Sum:				100.6	89(2) ^b	0.88(2)		$\rightarrow 0.88(1)$
									- 0.00(4)
936	0	59.4	14.5	1.6	89.4				
	0.429	52.8	11.1	0.6	16.2				
	Sum				105.6	94(9) ^c	0.89(9)		
1440	0	60.5	15.9	1.4	92.1				
	0.429	53.6	12.1	0.6	16.7				
	Sum:				108.8	96(3) ^d	0.88(3)		

Spectroscopic factors at lower energy

Two nucleon removal - what are useful regimes?

$$\sigma_{\text{strip}} = \int d\mathbf{b} \ \langle \phi_0 || S_c |^2 (1 - |S_1|^2) (1 - |S_2|^2) |\phi_0 \rangle$$

Estimate assuming removal of a pair of uncorrelated nucleons - $\phi_0(A, \mathbf{r}_1, \mathbf{r}_2) = \Phi_c(A)\phi_{\ell_1}(\mathbf{r}_1)\phi_{\ell_2}(\mathbf{r}_2)$ $\sigma_{strip} \Rightarrow \sigma_{strip}(\ell_1\ell_2)$

contribution from direct 2N removal $\sigma_{\!\!-\!2N}$

$$\sigma_{-2N} = \frac{p(p-1)}{2} \sigma_{\text{strip}}(\ell_{\alpha}\ell_{\alpha}) + \frac{q(q-1)}{2} \sigma_{\text{strip}}(\ell_{\beta}\ell_{\beta}) + pq \sigma_{\text{strip}}(\ell_{\alpha}\ell_{\beta})$$

D. Bazin et al., MSU preprint, submitted

Time for a coffee break

stand of the Alex Internal