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Basic nuclear physics and nuclear astrophysics are 
being studied using inertial fusion implosions 
•  Inertial fusion implosions create high-temperature high-density plasmas, in 

which thermonuclear reactions occur at conditions comparable to 
astrophysical systems. 
 

•  Data on the 3He(T,γ)6Li reaction, relevant to big-bang nucleosynthesis 
(BBN), rule out that reaction as an explanation for anomalously high levels 
of 6Li observed in the universe. 
 

•  Proton spectra from the 3He(T,np)4He and 3He(3He,2p)4He reactions 
disagree with R-matrix predictions. 
 

•  New data on the D(p,γ)3He reaction, relevant to brown dwarfs and BBN, will 
be directly compared to accelerator data. 
 

•  This technique has broad future applications for nuclear physics. 
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Several ‘classes’ of nuclear experiments can be done 
using implosions at these facilities 
•  Thermonuclear reactions 

•  Instead of DT, capsules can be filled with various fuels to study different 
reactions 

•  Can study spectra produced, or cross sections (usually by ratio to a 
better-known reaction) 

•  Implosion as an intense neutron source 
•  1016 neutrons in ~100ps over 30µm radius volume -> 1030 n/cm2/s 
•  Direct neutron reactions [e.g. (n,2n), (n,γ), etc] or reactions of knock-on 

products [elastic scattered D or T] 
•  Plasma-nuclear effects (not yet) 

•  Screening effects 
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ICF capsule implosions can create densities and 
temperatures similar to stellar cores 

Stellar evolution simulations by Dave Dearborn  
NIF Simulations Harry Robey and Bob Tipton 
OMEGA Simulation P. B. Radha  
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The T+3He fusion reaction was studied at the OMEGA 
facility 

CPS2 MRS 

Charged particles are measured with dipole 
magnetic spectrometers1,2 

Gammas measured with Cherenkov detector3 

1: D.G. Hicks, PhD Thesis (1999) 
2: J. Frenje et al., RSI 79, 10E502 (2008) 
3: J. Mack et al., NIMA 513, 566 (2003) 

T + 3He  → 4He + d (9.5 MeV)     ~60% 
   → 4He + p (<10 MeV ) + n 

  → 5He + p (9.3 MeV)     → 4He + p + n  ~40% 
  → 5He* + p (6.4 MeV)   → 4He + p + n   
  → 5Li + n          → 4He + p + n 
  → 6Li + γ 	 	 	 	 	 	0.1% 

2-3 µm SiO2 

18 atm 
T3He 

Ti ~ 19 keV 
Ecm ~ 80 keV 
ρ  ~ 0.1 g/cc The γ branch has been hypothesized to 

potentially explain astrophysical 6Li anomalies 
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The γ data give a S-factor for this reaction at the 
lowest CM energy ever (first relevant to BBN) 

This reaction rate cannot explain high 6Li levels in primordial material. 

S.L. Blatt et al., Phys. Rev. (1968)  Madsen et al., PRD (1990) 
Fukugita et al., PRD (1990)   Boyd et al., PRD (2010) 

OMEGA 
Accelerator 
Theory Fit 

Astrophysics 

A.B. Zylstra et al., Phys. Rev. Lett. 117, 035002 (2016) 
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The 3He(3He,2p)4He reaction, relevant to the solar 
proton-proton chain, has also been studied at OMEGA 

3He + 3He  →    4He + 2p (0-10.8 MeV) 
   →    5Li  +  p (9.2 MeV)   
   →    5Li* +  p 

2-3 µm SiO2 

12 atm 
3He 

Ti ~ 27 keV 
Ecm ~ 165 keV 
ρ = 0.1 g/cc 
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A comparison of proton spectra from 3He3He and T3He to R-matrix 
theory shows an underprediction of the ground state (5Li/5He) 
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Components in the R-matrix calculation suggest it is 
underestimating the 5Li ground state contribution 
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The D(p,γ)3He reaction, relevant to protostars and brown dwarfs, 
was recently studied on OMEGA with a new Cherenkov detector1 

D  +  p  →     3He  +  γ (5.5 MeV) 

15µm CH 

12 atm 
HD 

Ti ~ 5 keV 
Ecm ~ 16 keV 

1: H.W. Herrmann et al., RSI 85, 11E124 (2014) 
2: G.M. Griffiths et al., Can. J. Phys. 41, 724 (1963); G.J. Schmid et al., PRC 52, 1732 (1995); C. Casella et al., Nuclear Physics A 706, 203 (2002) 
 

Accelerator data2 

OMEGA data 
D(p,γ)3He 

First direct plasma-accelerator comparison for an astrophysical reaction, agreement validates 
both techniques. With improved calibrations (in progress), error will be reduced. 
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There is a rich set of opportunities to study nuclear 
reactions at OMEGA and the NIF 

Charged-particle induced reactions: 
•  T(t,2n)4He (analogue to 3He(3He,2p)4He) [1] 
•  T(3He,np)4He, T(3He,d) 4He, T(3He,γ)6Li (BBN) [2] 
•  3He(3He,2p)4He (pp-I) [3] 
•  D(p,γ)3He (Brown dwarfs, protostars) [4] 
•  T(d,γ)5He [5]	
•  4He(D,γ)6Li (BBN)	
•  4He(T,γ)7Li (BBN)	
•  4He(3He,γ)7Be (Solar) 
•  6Li(p,α)3He (BBN) 
•  7Li(p,α)4He (BBN) 
•  7Be(p,γ)8B (Solar) 
•  11B(p,α)8Be  (Basic nuclear) 
•  15N(p,α)12C (CNO) 
Neutron-induced reactions: 
•  n-d and n-T at 14 MeV [6] 
•  D(n,2n) at 14 MeV [7] 
•  T(n,2n) at 14 MeV 
•  Various (n,γ), (n,2n) processes 

Proton-proton chain 

CNO cycle 

Current work 

1: Casey et al., PRL 2012; Sayre et 
al., PRL 2013; Gatu Johnson et al., 
to be submitted. 
2: Zysltra et al., PRL 2016 
3-4: Zylstra et al., to be submitted 
5: Kim et al., PoP and PRC (2012) 
6: Frenje et al., PRL 2011 
7: Forrest et al., to be submitted 
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EXTRA SLIDES 
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The conditions created in ICF (and astrophysical) 
plasmas are different from accelerator experiments 

Thermal ions 
Thermal electrons 

Dense and hot plasma 

Accelerator experiments 
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An anomaly exists in the abundance of 6Li in 
primordial material, could be produced by big-bang 
nucleosynthesis (BBN)? 
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FIG. 2 (color online). Nuclear abundance as a function of
temperature T9, where T9 ¼ T=109 K. Abundances are given
as mass fraction for 4He and number abundance relative to
hydrogen for all others.
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FIG. 3 (color online). 6Li destruction rates as a function of
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FIG. 1 (color online). Reaction network for BBN, as modified from [39]. The nuclei indicated in dotted boxes are completely
unstable, whereas those in dashed boxes have some stable states and some others that are relevant to BBN that undergo particle decay
to some other nuclei. Lighter (red) lines indicate reactions newly added to the BBN code, and darker (blue) lines indicate reactions
studied in the context of nonthermal neutrons. Double thickness lines indicate more than one possible reaction.

NEW NUCLEAR PHYSICS FOR BIG BANG NUCLEOSYNTHESIS PHYSICAL REVIEW D 82, 105005 (2010)

105005-7

1 M. Asplund et al., Astrophysical Journal 644, 229 (2006) 
2 B.D. Fields, Annual Review of Nuclear and Particle 

 Science 61, 47 (2011) 
3 Boyd et al., Phys. Rev. D 82, 105005 (2010) 
4 J. Madsen, Phys. Rev. D 41, 2472(1990) 
5 M. Fukugita et al., Phys. Rev. D 42, 4251 (1990) 
6 S.L. Blatt et al., Phys. Rev. 176 1147 (1968) 

Predicted 6Li abundance too low to 
explain observations1,2 

A BBN solution is elusive3 

3He(T,γ)6Li has been hypothesized to 
be important, but this is contentious. 
Severe lack of data at low energy6 
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New R-matrix analysis of the T3He reaction γ spectrum 
and S-factor have been performed 

16.19           1 ;0+

16.19 MeV 
New resonance Spectrum 

Weighted 
spectrum 

A more careful treatment of 6Li excited 
states has been done for this work than 
previous literature 

Level Diagram 
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Example Cherenkov data from the p+D experiment 

D  +  p  →     3He  +  γ (5.5 MeV) 

15µm CH 
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Ti ~ 5 keV 
Ecm ~ 16 keV 
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