

Charge Symmetry Breaking in the $dd \rightarrow {}^{4}\text{He}\pi^{0}$ Reaction with WASA-at-COSY

Maria Żurek for the WASA-at-COSY Collaboration

Institute for Nuclear Physics Research Center Jülich and University of Cologne

Isospin Symmetry

Two sources of violation:

- Electromagnetic interaction
- Lightest quark mass difference → Window for probing quark mass ratios

Isospin Symmetry

Two sources of violation:

- Electromagnetic interaction
- Lightest quark mass difference → Window for probing quark mass ratios

Isospin Symmetry

Two sources of violation:

- Electromagnetic interaction
- Lightest quark mass difference → Window for probing quark mass ratios

Access to ΔM_{str} from dynamic ISB from Chiral Perturbation Theory

 πN scattering length, e.g., $a(\pi^0 p) - a(\pi^0 n) = f(\Delta M_{str})$ (Weinberg 1977)

However:

- No direct measurement of $\pi^o N$
- Large e.m. corrections in $\pi^{\pm}N$

Charge Symmetry Breaking

Isospin Symmetry Breaking

Dominated by pion mass difference Δm_{π} – e.m. effect

Charge Symmetry (CS) Breaking

Symmetry under the operation of $P_{CS} = e^{-i\tau_2 \pi/2} - \Delta m_{\pi}$ does not contribute

Charge Symmetry Breaking

Dominated by pion mass difference Δm_{π} – e.m. effect

Charge Symmetry (CS) Breaking

Symmetry under the operation of $P_{CS} = e^{-i\tau_2 \pi/2} - \Delta m_{\pi}$ does not contribute

1. $np \rightarrow d\pi^0$ forward-backward asymmetry A_{fb} [1] $\Delta M_{ctr} = (1.5 \pm 0.8 \text{ (exp.)} \pm 0.5 \text{ (th.)}) \text{ MeV} \text{ (LO)} [2]$ 2. $dd \rightarrow {}^{4}\text{He}\pi^{0}$ $CS \Rightarrow \sigma = 0$ $CS \Rightarrow \sigma \neq 0, \sigma \propto |M_{CSB}|^2 = |M_1 + M_2 + \dots |^2$ σ_{total} measured at treshold [3] and at Q = 60 MeV [4] *p*-wave contribution in $dd \rightarrow {}^{4}\text{He}\pi^{0}$ Result at treshold **Chiral Perturbation** at higher excess energies needed Theory consistent with s-wave [1] Opper et al. PRL 91 (2003) 212302 [2] Filin et al. Phys. Lett. B681 (2009) 423 [3] Stephenson et al. PRL 91 (2003) 142302 [4] Adlarson et al. Phys. Lett. B 739 (2014) 44

15.09.2016

M. Żurek - CSB with WASA

WASA-at-COSY experiment

2007: Measurement of $dd \rightarrow {}^{3}Hen\pi^{0}$

goal: description of main background, input for initial-state-interaction calculations

2008: First measurement of $dd \rightarrow {}^{4}\text{He}\pi^{0}$ (2 weeks) @ Q = 60 MeV goal: σ_{total}

2014: New measurement of $dd \rightarrow {}^{4}\text{He}\pi^{0}$ (8 weeks) @ Q = 60 MeV with modified detector goal: angular distribution

Analysis of $dd \rightarrow {}^{4}\text{He}\pi^{0}$

- → Optimized cuts on cumulated probability distribution (p-value)
- \rightarrow Suppresion of $dd \rightarrow {}^{3}\text{Hen}\pi^{0}$ about 10⁴

Mitglied der Helmholtz-

Missing mass of $dd \rightarrow {}^{4}\text{He}X$

Four angular bins

Luminosity determination using $dd \rightarrow {}^{3}Hen\pi^{0}$

Unpolarized differential cross section (terms up to order $p_{\pi^0}^2$ to the intensity): $\frac{d\sigma}{d\Omega} = \frac{2}{3} \frac{p_{\pi^0}}{p_d} \left(|A_0|^2 - p_{\pi^0}^2 \Re\{A_0^* A_2\} + |C|^2 p_{\pi^0}^2 \right) + \frac{p_{\pi^0}}{p_d} \left(2p_{\pi^0}^2 \Re\{A_0^* A_2\} - \frac{2}{3}|C|^2 p_{\pi^0}^2 \right) \cos^2 \theta^*$

Unpolarized differential cross section (terms up to order $p_{\pi^0}^2$ to the intensity):

$$\frac{d\sigma}{d\Omega} = \frac{2}{3} \frac{p_{\pi^0}}{p_d} \left(|A_0|^2 - p_{\pi^0}^2 \Re\{A_0^* A_2\} + |C|^2 p_{\pi^0}^2 \right) + \frac{p_{\pi^0}}{p_d} \left(2p_{\pi^0}^2 \Re\{A_0^* A_2\} - \frac{2}{3} |C|^2 p_{\pi^0}^2 \right) \cos^2 \theta^*$$

Unpolarized differential cross section (terms up to order $p_{\pi^0}^2$ to the intensity):

$$\frac{d\sigma}{d\Omega} = \frac{2}{3} \frac{p_{\pi^0}}{p_d} \left(|A_0|^2 - p_{\pi^0}^2 \Re\{A_0^* A_2\} + |C|^2 p_{\pi^0}^2 \right) + \frac{p_{\pi^0}}{p_d} \left(2p_{\pi^0}^2 \Re\{A_0^* A_2\} - \frac{2}{3} |C|^2 p_{\pi^0}^2 \right) \cos^2 \theta^*$$

s-wave amplitude

s-d interference term

15.09.2016

Unpolarized differential cross section (terms up to order $p_{\pi^0}^2$ to the intensity): $\frac{d\sigma}{d\Omega} = \frac{2}{3} \frac{p_{\pi^0}}{p_d} \left(|A_0|^2 - p_{\pi^0}^2 \Re\{A_0^* A_2\} + |C|^2 p_{\pi^0}^2 \right) + \frac{p_{\pi^0}}{p_d} \left(2p_{\pi^0}^2 \Re\{A_0^* A_2\} - \frac{2}{3} |C|^2 p_{\pi^0}^2 \right) \cos^2 \theta^*$

s-d interference term

M. Żurek - CSB with WASA

Comparison with other measurements

$$\sigma_{tot} = (79.1 \pm 7.3(stat.)^{+1.2}_{-10.5}(syst.) \pm \\\pm 8.1(norm.) \pm 2.0(lumi. syst.)) pb$$

 $\sigma_{tot}^{prev} = (123 \pm 30(stat.) \pm 12(norm.) \pm 8.6(ext.)) pb$

From energy dependence of total cross section we can obtain *s*-wave amplitude $|A_0|^2$

(Neglecting initial and final state interactions)

$$\frac{\rho}{\rho_{\pi^0}}\sigma_{\rm tot} = \frac{8\pi}{3}|A_0|^2 + \frac{16\pi}{9}m_{\pi^0}^2|C|^2\eta^2$$

- Defined mostly by measurement close to threshold

 $|A_0|^2 = (32.7 \pm 4.5) \text{ pb/sr}$

With fixed $|A_0|^2$ we can determine $|C|^2$ and $\Re \{A_0^*A_2\}$ from the fit:

$$\frac{p_d}{p_{\pi^0}} \frac{d\sigma}{d\Omega} = \frac{2}{3} \left(|A_0|^2 - p_{\pi^0}^2 \Re\{A_0^*A_2\} + |C|^2 p_{\pi^0}^2 \right) + \left(2p_{\pi^0}^2 \Re\{A_0^*A_2\} - \frac{2}{3}|C|^2 p_{\pi^0}^2 \right) \cos^2 \theta^*$$

fixed

M. Żurek - CSB with WASA

Combined interpretation

Common (correlated) systematic uncertainties:

- From luminosity determination
- From fixed $|A_0|^2$

Summary

- Charge Symmetry Breaking used to access quark mass effects.
 Theoretical tool: Chiral Perturbation Theory.
- Higher partial wave contributions in $dd \rightarrow {}^{4}\text{He}\pi^{0}$ needed.
- Data from the new measurement of $dd \rightarrow {}^{4}\text{He}\pi^{0}$ at Q = 60 MeV in 2014 with WASA analyzed. Total and differential cross section obtained.
- Results show that any theoretical attempt to describe the reaction had to include, in addition to *p*-waves, also *d*-wave contributions.

Backup

Charge Symmetry Breaking

Measurements of CSB observables

Inp→dπ⁰ forward-backward asymmetry A_{fb}

- leading CSB term: πN rescattering
- Opper et al., A_{fb} = (17.2 ± 8.0 ± 5.5) · 10⁻³
 (PRL 91 (2003) 212302)
- Pion production in dd→4He π⁰

 $\text{CSC} \Rightarrow \sigma \text{ = } 0$

 $\mathsf{CSB} \Rightarrow \ \sigma \neq 0, \ \sigma \propto |\mathsf{M}_{\mathsf{CSB}}|^2$

Complementary to $np \rightarrow d\pi_0$:

- different strength of CSB terms
- dd initial state more demanding

Result: Stephenson et al.

(PRL 91 (142302) 2003)

 σ_{tot} (Q=1.4 MeV) = 12.7 ± 2.2 pb

 σ_{tot} (Q=3.0 MeV) = 15.1 ± 3.1 pb

Result consistent with s-wave production

$dd \rightarrow {}^{3}Hen\pi^{0}$ reaction measurement

full model

- Quasi-free contribution: dd \rightarrow ³He π ⁰ + n_{spec}
- Partial waves decomposition of the 3-body final state (limited to L≤1)

First dd \rightarrow ⁴He π^{0} measurement with WASA \bigcup JÜLICH

Results:

consistent with s-wave only However: not decisive due to limited statistics

15.09.2016

M. Żurek - CSB with WASA

Results – angular distribution

Detector Calibration

ToF Calibration

- $dd \rightarrow 3Hen$ time peak position used
- Calibrate the data to the MC values for every detector element as a function of θ

dE Calibration

- Based on ToF
- **MC**: dE [GeV] vs ToF [ns] \rightarrow dE_{GeV}(ToF)
- **Data:** dE [channels] vs ToF [ns] \rightarrow dE_{ch}(ToF) •
- \rightarrow Run-wise correction, θ -dependency correction

Kinetic Energy Reconstruction

- Based on $E_{kin}(ToF_1)$, $E_{kin}(ToF_2)$, $E_{kin}(dE_{FWC1})$, $E_{kin}(dE_{FWC2})$
- χ^2 fit used to obtain the best matching E_{kin}

0.018

0.016

0.014

0.012

0.01

0.008

0.004

0.002

Energy losses calibration in FWC

beginning of the beamtime

830 runs after beginning of the beamtime (about 1/4 of all runs)

- \rightarrow Run correction to dE calibration for every FWC1 and FWC2 element need
- \rightarrow Separate calibration for 2nd part of the beamtime

ICH

Kinetic energy calibration

- Minimization of χ^2 : $\chi^2 = \sum_{i=1}^n \frac{(dE_i^{meas} dE(E_{kin})_i)^2}{\sigma_i^2} + \sum_{i=1}^m \frac{(\text{TOF}_j^{meas} \text{TOF}(E_{kin})_j)^2}{\sigma_j^2}$
- $E_{kin}(ToF_1)$, $E_{kin}(ToF_2)$, $E_{kin}(dE_{FWC1})$, $E_{kin}(dE_{FWC2})$ dependency from MC
- Data based uncertainties of ToF(dE) as a function of ToF(dE) (first ineration)

Obtained partial-waves contributions

 $\Re\{A_0^*A_2\} = (1670 \pm 320(\text{stat.})_{-430}^{+80}(\text{syst.})) \text{ pb/}(\text{sr} \cdot (\text{GeV/}c)^2)$ $|C|^2 = (520 \pm 290(\text{stat.})_{-430}^{+50}(\text{syst.})) \text{ pb/}(\text{sr} \cdot (\text{GeV/}c)^2)$

Leading diagrams of CSB reactions

Formally leading operators for *p*-wave pion production in $dd \rightarrow {}^{4}He\pi^{0}$.

Leading order diagram for the CSB *s*-wave amplitudes of the $np \rightarrow d\pi^0$ reaction