International Nuclear Physics Conference (INPC2016) Sep. 11–16, 2016, Adelaide



# Structure of Exotic Nuclei --- a theoretical review ----

#### Shan-Gui Zhou (周善贵)

Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing School of Physics, University of Chinese Academy of Sciences, Beijing Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou Synergetic Innovation Center for Quantum Effects and Application, Hunan Normal University, Changsha

> Supported by: NSFC & MOST HPC Cluster of SKLTP/ITP-CAS ScGrid of CNIC-CAS

# Outline

#### □ Introduction

- D Physics of exotic nuclei
  - ➤Weakly-bound features
  - Large spatial extension
  - Deformation effects
  - ➤Shell evolution
  - ➢New radioactivities
  - Clustering
- Perspectives





Nuclear chart: courtesy of Ning Wang (王宁)





WS4: Wang\_Liu\_Wu\_Meng 2014\_PLB734-215

WS4: Weizsäcker-Skyrme mass model, Ver. 4

Nuclear chart: courtesy of Ning Wang (王宁)



#### Exotic nuclei: Weakly bound

Threshold; Continuum & resonance; Open quantum systems



Meng+2006\_PPNP57-470 Meng\_SGZ2015\_JPG42-093101

#### Exotic nuclei: Weakly bound

#### Threshold; Continuum & resonance; Open quantum systems





Meng+2006\_PPNP57-470 Meng\_SGZ2015\_JPG42-093101 Dobaczewski+2007\_PPNP59-432 Michel+2009\_JPG36-013101

> Bonaccorso & Larsen's talks Lugaro & Surman's talks

#### **Physics of exotic nuclei**



## Halo: Large spatial extension

Low-density neutron matter; Di-neutron correlation; Soft dipole mode



<sup>11</sup>Li: Nakamura+2006\_PRL96-252502; ...; Kanungo+2015\_PRL114-192502

Tamii's talk

#### **Physics of exotic nuclei**



#### **Halo: Deformation effects**

$$R(\theta,\varphi) = R_0 \left[ 1 + \beta_{00} + \sum_{\lambda=1}^{\infty} \sum_{\mu=-\lambda}^{\lambda} \beta_{\lambda\mu}^* Y_{\lambda\mu}(\theta,\varphi) \right]$$

SGZ 2016\_PhysScr 91- 063008



Figure courtesy of Bing-Nan Lu (吕炳楠)

## **Halo: Deformation effects**



#### Observation of a *p*-Wave One-Neutron Halo Configuration in <sup>37</sup>Mg

N. Kobayashi,<sup>1,\*</sup> T. Nakamura,<sup>1</sup> Y. Kondo,<sup>1</sup> J. A. Tostevin,<sup>2,1</sup> Y. Utsuno,<sup>3</sup> N. Aoi,<sup>4,†</sup> H. Baba,<sup>4</sup> R. Barthelemy,<sup>5</sup> M. A. Famiano,<sup>5</sup> N. Fukuda,<sup>4</sup> N. Inabe,<sup>4</sup> M. Ishihara,<sup>4</sup> R. Kanungo,<sup>6</sup> S. Kim,<sup>7</sup> T. Kubo,<sup>4</sup> G. S. Lee,<sup>1</sup> H. S. Lee,<sup>7</sup> M. Matsushita,<sup>4,‡</sup> T. Motobayashi,<sup>4</sup> T. Ohnishi,<sup>4</sup> N. A. Orr,<sup>8</sup> H. Otsu,<sup>4</sup> T. Otsuka,<sup>9</sup> T. Sako,<sup>1</sup> H. Sakurai,<sup>4</sup> Y. Satou,<sup>7</sup> T. Sumikama,<sup>10,§</sup> H. Takeda,<sup>4</sup> S. Takeuchi,<sup>4</sup> R. Tanaka,<sup>1</sup> Y. Togano,<sup>4,¶</sup> and K. Yoneda<sup>4</sup>

## **Physics of exotic nuclei**



Shape decoupling

## **Exotic Nuclei: Shell Evolution**



## **Physics of exotic nuclei**



#### **Exotic Nuclei: New Radioactivities**

Woods\_Davids1997\_ARNPS47-541 Thoennessen2004\_RPP67-1187

Pfutzner+2012\_RMP84-567

#### Lin+2011\_SciChinaPMA54S1-73 SCIENCE CHINA

Physics, Mechanics & Astronomy

• Research Paper • Radioactive Nuclear Beam Physics and Nuclear Astrophysics August 2011 Vol.54 Suppl. 1: s73–s80 doi: 10.1007/s11433-011-4431-9



Experimental research into the two-proton emissions from <sup>17,18</sup>Ne, <sup>28</sup>P and <sup>28,29</sup>S



Different mechanism of two-proton emission from proton-rich nuclei  $^{23}\mathrm{Al}$  and  $^{22}\mathrm{Mg}$ 



#### **Exotic Nuclei: New Radioactivities**

Woods\_Davids1997\_ARNPS47-541 Thoennessen2004\_RPP67-1187 Lunderberg+2012\_PRL108-142503:  $E=150^{+50}_{-150}$  keV Kohley+2013\_PRL110-152501:  $T_{1/2}$  (<sup>26</sup>O) ~ 4.5 ps





Pfutzner+2012\_RMP84-567

#### **Exotic Nuclei: New Radioactivities**

Woods\_Davids1997\_ARNPS47-541 Thoennessen2004\_RPP67-1187 Lunderberg+2012\_PRL108-142503:  $E=150^{+50}_{-150}$  keV Kohley+2013\_PRL110-152501:  $T_{1/2}$  (<sup>26</sup>O) ~ 4.5 ps



Kondo+2016\_PRL116-102503: *T*<sub>1/2</sub> (<sup>26</sup>O) ~ 10<sup>-17</sup>-10<sup>-15</sup> s



Pfutzner+2012\_RMP84-567

## **Physics of exotic nuclei**



## **Exotic Nuclei: Clustering**



## **Exotic Nuclei: Clustering**



## **Exotic Nuclei: Clustering**

# Alpha-nuclei: N=Z=even number $\stackrel{8}{0}$ $\stackrel{12}{0}$ $\stackrel{16}{0}$ $\stackrel{20}{0}$ Ne $\stackrel{24}{0}$ Mg $\stackrel{28}{0}$ Si $\stackrel{8}{0}$ $\stackrel{72}{0}$ $\stackrel{10}{0}$ $\stackrel{20}{0}$ Ne $\stackrel{24}{0}$ Mg $\stackrel{28}{0}$ Si PRL 112, 162501 (2014) PHYSICAL REVIEW LETTERS



#### Observation of Enhanced Monopole Strength and Clustering in <sup>12</sup>Be

Z. H. Yang (杨再宏),<sup>1</sup> Y. L. Ye (叶沿林),<sup>1,\*</sup> Z. H. Li (李智焕),<sup>1</sup> J. L. Lou (楼建玲),<sup>1</sup> J. S. Wang (王建松),<sup>2</sup> D. X. Jiang (江栋兴),<sup>1</sup> Y. C. Ge (葛愉成),<sup>1</sup> Q. T. Li (李奇特),<sup>1</sup> H. Hua (华辉),<sup>1</sup> X. Q. Li (李湘庆),<sup>1</sup> F. R. Xu (许甫荣),<sup>1</sup> J. C. Pei (裴俊琛),<sup>1</sup> R. Qiao (乔锐),<sup>1</sup> H. B. You (游海波),<sup>1</sup> H. Wang (王赫),<sup>1,3</sup> Z. Y. Tian (田正阳),<sup>1</sup> K. A. Li (李阔昂),<sup>1</sup> Y. L. Sun (孙叶磊),<sup>1</sup> H. N. Liu (刘红娜),<sup>1,3</sup> J. Chen (陈洁),<sup>1</sup> J. Wu (吴锦),<sup>1,3</sup> J. Li (李晶),<sup>1</sup> W. Jiang (蒋伟),<sup>1</sup> C. Wen (文超),<sup>1,3</sup> B. Yang (杨彪),<sup>1</sup> Y. Y. Yang (杨彦云),<sup>2</sup> P. Ma (马朋),<sup>2</sup> J. B. Ma (马军兵),<sup>2</sup> S. L. Jin (金仕纶),<sup>2</sup> J. L. Han (韩建龙),<sup>2</sup> and J. Lee (李暁菁)<sup>3</sup>



vonOertzen\_Freer\_Kanada-En'yo 2006\_PR432-43

## **Physics of exotic nuclei**



## Weakly bound: Models dealing w/ Continuum

#### □ Few-body approach

- Two-particle Green's function or complex scaling methods
- □ Shell model
  - Berggren basis
- (Relativistic) Hartree(-Fock) + resonance BCS approach
- (Relativistic) Hartree(-Fock)
   Bogoliubov model
  - R-space or equivalent basis

Frederico+2012\_PPNP67-939 Meng\_SGZ2015\_JPG42-093101 Sagawa\_Hagino2015\_EPJA51-102 Ji2016\_IJMPE25-1641003

## Weakly bound: Models dealing w/ Continuum

- Few-body approach
  - Two-particle Green's function or complex scaling methods
- □ Shell model
  - Berggren basis
- (Relativistic) Hartree(-Fock) + resonance BCS approach
- (Relativistic) Hartree(-Fock)
   Bogoliubov model
  - R-space or equivalent basis

Frederico+2012\_PPNP67-939 Meng\_SGZ2015\_JPG42-093101 Sagawa\_Hagino2015\_EPJA51-102 Ji2016\_IJMPE25-1641003

#### Suzuki\_Otsuka\_Yuan\_Navin2016\_PLB753-199



Togano+2016\_PLB761-412:  $r_m$ =3.44 ± 0.08 fm Tanaka+2010\_PRL104-062701:  $r_m$ =5.4±0.9 fm

## **Single Particle Resonances**

- Scattering phase shift method
- Bound-state-like approaches Efros+2007 JPG34-R459; Carbonell+2014 PPNP74-55
  - $\blacktriangleright$  Analytical continuation of coupling constant (ACCC)

Tanaka+1997 PRC56-562; Yang Meng SGZ2001 CPL8-196; Zhang+2004 PRC70-034308 Guo Fang2006 PRC74-024320; Zhang+2012 PRC86-032802; Xu+2015 PRC92-024324 Real stabilization method (RSM)

Zhang+2008 PRC77-014312; Pei Kruppa Nazarewicz2011 PRC84-024311

Complex scaling method (CSM)

.....; Myo+2014 PPNP79-1; Papadimitriou Vary2015 PRC91-021001R Shi2015 PRC92-054313

- Jost function method
- Green's function method
- Green's function + CSM

Lu Zhao SGZ2012 PRL109-072501; 2013 PRC88-024323

Matsuo2001 NPA696-371; .....; Sun+2014 PRC90-054321

Shi+2015 PRC92-054313; Shi+2016 PRC94-024302 Complex momentum representation

Li+2016 PRL117-062502; Liang's talk

#### Nilsson Diagram w/ Resonances



#### <sup>17</sup>Ne: RMF+ACCC+BCS



rBCS: Sandulescu\_Giai\_Liotta2000\_PRC61-061301R; Sandulescu+2003\_PRC68-054323

#### Weakly bound: Continuum (R)HFB model

Contribution of continuum can be taken into account by solving HFB equations in *r*-space Bulgac1980 (nucl-th/9907088) ; Dobaczewski\_Flocard\_Treiner1984\_NPA422-103

## Weakly bound: Continuum (R)HFB model

Contribution of continuum can be taken into account by solving HFB equations in *r*-space Bulgac1980 (nucl-th/9907088) ; Dobaczewski\_Flocard\_Treiner1984\_NPA422-103

#### Skyrme or Gogny Hartree-Fock-Bogoliubov models

|                        | Spherical Nuclei                                                                                        | Deformed Nuclei                                                                 |
|------------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| Box<br>Boundary        | Dobaczewski_Flocard_Treiner1984_NPA422<br>Dobaczewski+1996_PRC53-2809<br>Schunck_Egido2008_PRC78-064305 | Nakada2008_NPA808-47<br>Pei_Zhang_Xu2013_PRC87-051302R<br>Pei+2014_PRC90-024317 |
| Scattering<br>Boundary | Zhang_Matsuo_Meng2011_PRC83-054301<br>Zhang_Matsuo_Meng2012_PRC86-054318                                | N/A                                                                             |

## Weakly bound: Continuum (R)HFB model

Contribution of continuum can be taken into account by solving HFB equations in *r*-space Bulgac1980 (nucl-th/9907088) ; Dobaczewski\_Flocard\_Treiner1984\_NPA422-103

#### Relativistic Hartree(-Fock)-Bogoliubov models

|                        | Spherical Nuclei                                                                                  | Deformed Nuclei                                                                                           |
|------------------------|---------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| Box<br>Boundary        | Meng_Ring1996_PRL77-3963<br>Meng1998_NPA635-3<br>Poschl+1997_PRL79-3841<br>Long+2010_PRC81-024308 | SGZ+2010_PRC82-011301R<br>Li+2012_PRC85-024312<br>Li+2012_ChinPhysLett29-042101<br>Chen+2012_PRC85-067301 |
| Scattering<br>Boundary | N/A                                                                                               | N/A                                                                                                       |

## **Physics of exotic nuclei**



#### **Shape Decoupling in Deformed Halo Nuclei**

#### Relativistic HB model <sup>44</sup>Mg: Prolate Core + Oblate Halo





#### **Shape Decoupling in Deformed Halo Nuclei**



#### **Shape Decoupling in Deformed Halo Nuclei**


# Shape Decoupling in Deformed Halo Nuclei



# **Physics of exotic nuclei**



### **Di-nucleon correlations**

- Asymptotic form of neutron Cooper pairs Zhang\_Matsuo\_Meng2014\_PRC90-034313R
- Di-neutron corr.: <sup>10</sup>Be=<sup>8</sup>Be+2n Kobayashi\_Kanada-En'yo2016\_PRC93-024310
- Di-proton corr.: <sup>6</sup>Be=<sup>4</sup>He+2p Oishi\_Hagino\_Sagawa2014\_PRC90-034303
- Neutron-proton corr.: <sup>18</sup>F=<sup>16</sup>O+<sup>2</sup>H Masui\_Kimura2016\_PTEP2016-053D01

# **Di-nucleon correlations**

#### Asymptotic form of neutron Cooper pairs

Zhang\_Matsuo\_Meng2014\_PRC90-034313R

Cooper pairs are spatially correlated in the asymptotic large distance limit, and the penetration length of the pair condensate is universally governed by the two-neutron separation energy

Masui\_Kimura2016\_PTEP2016-053D01



### Soft dipole modes

Theo. Review: Paar\_Vretenar\_Colo2007\_RPP70-691 Nakatsukasa\_Matsuyanagi\_Matsuo\_Yabana2016\_arXiv1606.04717 (RMP, in press) Expt. Review: Savran\_Aumann\_Zilges2013\_PPNP70-210

Ebata\_Nakatsukasa\_Inakura2014\_PRC90-024303 Roca-Maza+2012\_PRC85-024601 Vretenar+2012\_PRC85-044317 Inakura+2014\_PRC89-064316 Papakonstantinou\_Hergert\_Roth2015\_PRC92-034311 Ma+2016\_PRC93-014317 DeGregorio2016\_PRC93-044314 Zheng2016\_PRC94-014313

### Soft dipole modes

Theo. Review: Paar\_Vretenar\_Colo2007\_RPP70-691 Nakatsukasa\_Matsuyanagi\_Matsuo\_Yabana2016\_arXiv1606.04717 (RMP, in press) Expt. Review: Savran\_Aumann\_Zilges2013\_PPNP70-210

Ebata\_Nakatsukasa\_Inakura2014\_PRC90-024303

A systematic study with Cb-TDHFB reveals a number of characteristic features of the low-energy E1 modes, e.g., a universal behavior in the low-energy E1 modes for heavy neutron-rich isotopes, which suggests the emergence of decoupled E1 peaks beyond N = 82.



# **Physics of exotic nuclei**



Wienholtz+2013\_Nature498-346

LETTER

doi:10.1038/nature12226

# Masses of exotic calcium isotopes pin down nuclear forces

F. Wienholtz<sup>1</sup>, D. Beck<sup>2</sup>, K. Blaum<sup>3</sup>, Ch. Borgmann<sup>3</sup>, M. Breitenfeldt<sup>4</sup>, R. B. Cakirli<sup>3,5</sup>, S. George<sup>1</sup>, F. Herfurth<sup>2</sup>, J. D. Holt<sup>6,7</sup>, M. Kowalska<sup>8</sup>, S. Kreim<sup>3,8</sup>, D. Lunney<sup>9</sup>, V. Manea<sup>9</sup>, J. Menéndez<sup>6,7</sup>, D. Neidherr<sup>2</sup>, M. Rosenbusch<sup>1</sup>, L. Schweikhard<sup>1</sup>, A. Schwenk<sup>7,6</sup>, J. Simonis<sup>6,7</sup>, J. Stanja<sup>10</sup>, R. N. Wolf<sup>1</sup> & K. Zuber<sup>10</sup>

#### Steppenbeck+2013 Nature502-207



#### Steppenbeck+2013 Nature502-207



Grasso2014\_PRC89-034316 Yueksel+2014\_PRC89-064322 Wang\_Dong2015\_JPG42-125101

#### Steppenbeck+2013 Nature502-207



Grasso2014\_PRC89-034316



#### Steppenbeck+2013 Nature502-207





#### Steppenbeck+2013 Nature502-207









# **Physics of exotic nuclei**



# Study of 2p emitters with DFT



# **Physics of exotic nuclei**



# **Clustering phenomena in nuclei**

PRL 110, 262501 (2013)

PHYSICAL REVIEW LETTERS

week ending 28 JUNE 2013

Zhou+2013\_PRL111-103604

| <b>Nonlocalized Cl</b><br>Bo Zhou, <sup>1,2,3,*</sup> Y. Funa                                                                                                                                                                                                                     | Cluster model<br>Container picture |                             |                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|---------------------------------------------------------------|
| PRL 113, 032506 (2014)                                                                                                                                                                                                                                                            | PHYSICAL REVIEW LETTERS            | week ending<br>18 JULY 2014 | He2014_PRL113-032506                                          |
| Giant Dipole Resonance as a Fingerprint of α Clustering Configurations in <sup>12</sup> C and <sup>16</sup> O<br>W. B. He (何万兵), <sup>1.2</sup> Y. G. Ma (马余刚), <sup>1,3,*</sup> X. G. Cao (曹喜光), <sup>1,†</sup> X. Z. Cai (蔡翔舟), <sup>1</sup> and G. Q. Zhang (张国强) <sup>1</sup> |                                    |                             | QMD model<br>GDR connected<br>to clusterring                  |
| PRL 115, 022501 (2015)                                                                                                                                                                                                                                                            | PHYSICAL REVIEW LETTERS            | week ending<br>10 JULY 2015 | Zhao_Itagaki_Meng2015<br>PRL115-022501                        |
| Kod-shaped Nuclei at Extreme Spin and Isospin<br>P. W. Zhao (赵鹏巍), <sup>1,2,3</sup> N. Itagaki (板垣直之), <sup>1</sup> and J. Meng (孟杰) <sup>3,4,5,*</sup>                                                                                                                           |                                    |                             | Cranking RMF model<br>Clustering at extreme<br>spin & isospin |

### **Constrained Cluster Structure**



Girod\_Schuck2013\_PRL111-132503



Ebran\_Khan\_Niksic\_Vretenar2012\_Nature487-341 2014\_PRC89-031303R

### **Constrained Cluster Structure**



Girod\_Schuck2013\_PRL111-132503

Ebran\_Khan\_Niksic\_Vretenar2012\_Nature487-341 2014\_PRC89-031303R

# **Physics of exotic nuclei**



### Model, models, models's, ...

(INPC1995, Beijing)

Krishina Kumar:

We not only use different models to describe different nuclei, but also use different models to describe the same nucleus !

### Model, models, models's, ...

(INPC1995, Beijing)

Krishina Kumar:

We not only use different models to describe different nuclei, but also use different models to describe the same nucleus !



# Efforts to unify models & work more together

- Ab initio Ekström & Bacca's talks
- Density functional theories
  - Skyrme(-like): Ab initio derivation of model energy density functionals Dobaczewski et al., see, e.g., Dobaczewski2016\_JPG43-04LT01
  - Covariant: Toward an ab initio covariant investigations of heavy nuclei Meng et al., see, e.g., Shen+2016\_arXiv1609.01866; Liang's talk

# Efforts to unify models & work more together

- Ab initio Ekström & Bacca's talks
- Density functional theories
  - Skyrme(-like): Ab initio derivation of model energy density functionals Dobaczewski et al., see, e.g., Dobaczewski2016\_JPG43-04LT01
  - Covariant: Toward an ab initio covariant investigations of heavy nuclei Meng et al., see, e.g., Shen+2016\_arXiv1609.01866; Liang's talk

China-US Theory Inst. Phys. Exotic Nuclei (CUSTIPEN)
DFG-NSFC Collaborative Research Centre (CRC110)

# **Two future RIB facilities in China**



Courtesy of Xiao-Hong Zhou (周小红)

Courtesy of Wei-Ping Liu (柳卫平) & Yanlin Ye (叶沿林)

# **Two future RIB facilities in China**



Courtesy of Xiao-Hong Zhou (周小红)

Courtesy of Wei-Ping Liu (柳卫平) & Yanlin Ye (叶沿林)

# **Constraint Cluster Structure: Convergence?**

Calc. w/ multidimensionally-constrained covariant density functional (MDC-CDFT) theory



Jie Zhao et al., unpublished

#### **Threshold effects: Breakup effects on CF**



Wang\_Zhao\_Gomes\_Zhao\_SGZ2014\_PRC90-034612 Wang\_Zhao\_Diaz-Torres\_Zhao\_SGZ2016\_PRC93-014615

# Weakly bound: Continuum Shell Model



Berggren completeness relation

 $\sum_{n} u_n(E_n, r) u_n(E_n, r') + \int_L dE u(E, r) u(E, r') = \delta(r - r'),$ 

Okolowicz\_Ploszajczak\_Rotter2003\_PR374-271 Michel+2009\_JPG36-013101

#### Fossez+2016\_arXiv1607.08439



F. Xu et al.

# **Oxygen isotopes: Gamow Shell Model**



Zhong-Hao Sun, PhD Thesis

# Nilsson Diagram w/ Resonances from CSM



# **Pairing Anti-Halo Effect?**

Chen\_Ring\_Meng2014 PRC89-014312

Pairing correlations have a twofold influence on the density distribution of the neutrons and therefore on the total nuclear size. First, they can change the rootmean-square radius of the individual weakly bound orbits and, second, they can change the occupation probabilities of these orbits in the nuclear system. Both effects are important, and finally the total radius is dominated by their competition.



### **Uncertainties in Predicted Drip Lines**



# <sup>31</sup>Ne



Nakamura ... 2014\_PRL112-142501

### **Tetraneutron state ?!?...!**

PRL 116, 052501 (2016)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS Kisamori...2016\_PRL116-052501

week ending 5 FEBRUARY 2016

#### G

#### Candidate Resonant Tetraneutron State Populated by the <sup>4</sup>He(<sup>8</sup>He,<sup>8</sup>Be) Reaction

K. Kisamori,<sup>1,2</sup> S. Shimoura,<sup>1</sup> H. Miya,<sup>1,2</sup> S. Michimasa,<sup>1</sup> S. Ota,<sup>1</sup> M. Assie,<sup>3</sup> H. Baba,<sup>2</sup> T. Baba,<sup>4</sup> D. Beaumel,<sup>2,3</sup> M. Dozono,<sup>2</sup> T. Fujii,<sup>1,2</sup> N. Fukuda,<sup>2</sup> S. Go,<sup>1,2</sup> F. Hammache,<sup>3</sup> E. Ideguchi,<sup>5</sup> N. Inabe,<sup>2</sup> M. Itoh,<sup>6</sup> D. Kameda,<sup>2</sup> S. Kawase,<sup>1</sup> T. Kawabata,<sup>4</sup> M. Kobayashi,<sup>1</sup> Y. Kondo,<sup>7,2</sup> T. Kubo,<sup>2</sup> Y. Kubota,<sup>1,2</sup> M. Kurata-Nishimura,<sup>2</sup> C. S. Lee,<sup>1,2</sup> Y. Maeda,<sup>8</sup> H. Matsubara,<sup>12</sup> K. Miki,<sup>5</sup> T. Nishi,<sup>9,2</sup> S. Noji,<sup>10</sup> S. Sakaguchi,<sup>11,2</sup> H. Sakai,<sup>2</sup> Y. Sasamoto,<sup>1</sup> M. Sasano,<sup>2</sup> H. Sato,<sup>2</sup> Y. Shimizu,<sup>2</sup> A. Stolz,<sup>10</sup> H. Suzuki,<sup>2</sup> M. Takaki,<sup>1</sup> H. Takeda,<sup>2</sup> S. Takeuchi,<sup>2</sup> A. Tamii,<sup>5</sup> L. Tang,<sup>1</sup> H. Tokieda,<sup>1</sup> M. Tsumura,<sup>4</sup> T. Uesaka,<sup>2</sup> K. Yako,<sup>1</sup> Y. Yanagisawa,<sup>2</sup> R. Yokoyama,<sup>1</sup> and K. Yoshida<sup>2</sup> Orr2016\_Physics9-14

 $E = 0.83 \pm 0.65$ (stat.)  $\pm 1.25$ (syst.) MeV



# **Nuclear Radioactivities**



Pfutzner\_Karny\_Grigorenko\_Riisager 2012\_RMP84-567

TABLE VI. Ground-state 2p emitters investigated experimentally. The indicated half-life corresponds to the partial value for the 2p decay.

| NZ               | E (keV)   | $\Gamma$ or $T_{1/2}$                | Reference                   |
|------------------|-----------|--------------------------------------|-----------------------------|
| <sup>6</sup> Be  | 1371(5)   | 92(6) keV                            | Whaling (1966)              |
| $^{12}O$         | 1820(120) | $400(250)^{a}$ keV                   | KeKelis et al. (1978)       |
|                  | 1790(40)  | $580(200)^{a}$ keV                   | Kryger et al. (1995)        |
|                  | 1800(400) | $600(500)^{a}$ keV                   | Suzuki et al. (2009)        |
| <sup>16</sup> Ne | 1350(80)  | $200(100)^{a}$ keV                   | KeKelis et al. (1978)       |
|                  | 1400(20)  | $110(40)^{a}$ keV                    | Woodward, Tribble,          |
|                  |           |                                      | and Tanner (1983)           |
|                  | 1350(80)  | <200 keV                             | Mukha <i>et al.</i> (2008b) |
| <sup>19</sup> Mg | 750(50)   | 4.0(15) ps                           | Mukha et al. (2007)         |
| <sup>45</sup> Fe | 1100(100) | $4.0^{+3.3}_{-1.8}$ ms               | Pfützner et al. (2002)      |
|                  | 1140(50)  | $8.5^{+6.4}_{-3.2}$ ms               | Giovinazzo et al. (2002)    |
|                  | 1154(16)  | $2.8^{+1.0}_{-0.7}$ ms               | Dossat <i>et al.</i> (2005) |
|                  |           | $3.7^{+0.4}_{-0.4}$ ms               | Miernik et al. (2007c)      |
| <sup>48</sup> Ni | 1350(20)  | $8.4^{+12.8}_{-7.0}$ ms <sup>b</sup> | Dossat <i>et al.</i> (2005) |
|                  |           | $3.0^{+2.2}_{-1.2}$ ms               | Pomorski et al. (2011b)     |
| <sup>54</sup> Zn | 1480(20)  | $3.7^{+2.2}_{-1.0}$ ms               | Blank et al. (2005)         |

<sup>a</sup>According to theoretical calculations, much smaller widths are expected (Barker, 1999; Barker, 2001; Grigorenko *et al.*, 2002). <sup>b</sup>Only one decay event observed.