Inpc2016. Adelaide, Australia, 11-17 Sept. 2016

Identification of T = 2 isobaric analog state in 52 Co and its impact on the understanding of β^+ -decay properties of 52 Ni

Introduction
Heavy ion storage ring CSRe & IMS
Mass of IAS in ⁵²Co and β⁺ decay of ⁵²Ni
Summary

Yuhu Zhang (Y. H. Zhang) Institute of Modern Physics, Chinese Academy of Sciences Lanzhou 730000, China (<u>yhzhang@impcas.ac.cn</u>)

Previous investigations on the β decay of ⁵²Ni

- L. Faux et al., Phys. Rev. C 49, 2440 (1994). C. Dossat, et ab. Nick Phys. 14791, 98(2007).
- **3) S. Dossat, et al., Nucl. Phys. A792, 18(2007).**

Results:

- β -delayed proton and gammas measured,
- **Decay level scheme of ⁵²Ni established.**
- T=2 Isobaric analoge state (AS) in ⁵²Co identified ezels of earlied to the earlier as stated in the second second second second second second second second second

.... there is still a puzzule !

1. Introduction

β -delayed protons of ⁵²Ni

1. Introduction

IMME d-coefficient $^{52}Ni T=2$ 40 $I^{\pi} = 0^+$ **Theoretical feeding** coefficient (keV) β+ 30 to IAS ~66% 20 at Ex~2.9 MeV 52Ni 40Ti 10 **ME=-31561(13)** 0⁺, 2938 IAS 1+, 2875 σ -10 1+, 2636 **.P** -20 42 46 48 50 52 40 44 mass number 2378 2407 ME=-32913(9 ⁵¹Fe+p **Starting point** 168 **ME=-33968** 141 1+, 546 2+, 378 lsomer 6⁺, g.s ME = xg.s

⁵²Co

⁵²Mn

2. Heavy ion storage ring CSRe & IMS

Isochronous mass stpectrometry

⁵⁸Ni beam: revolution time spectrum

⁵⁸Ni beam: Mass Excesses of Tz = -1 nuclei

3. Mass of IAS in ⁵²Co and β^+ decay of ⁵²Ni

3. Mass of IAS in ⁵²Co and β⁺ decay of ⁵²Ni

Comparison with theoretical calculations

3. Mass of IAS in ⁵²Co and β⁺ decay of ⁵²Ni

4. Summary

- Masses of 52g,52m Co measured for the first time with $\sigma \sim 10$ keV.
- The T=2, $J^{\pi}=0^+$ IAS in ⁵²Co was newly assigned:
 - question conventional identification of IASs from β-p method
 masses of the T=2 multiplet fit well into the IMME
 Mirror symmetry satisfied
- IAS in ⁵²Co decays predominantly via γ-transitions while the proton emission is negligibly small (due to very low isospin mixing in the IAS)
- Shape coexistence in ⁵¹Fe was proposed in order to explain the details of the β^+ -decay branching ratios of ⁵²Ni.

4. Summary

H. S. Xu, Y. H. Zhang, X. L.Tu, X. L. Yan, M. Wang, X. H. Zhou, Y. J. Yuan, J. W. Xia, J. C. Yang, X. C.Chen, G. B. Jia, Z. G. Hu, X. W. Ma, R. S. Mao, B. Mei, P. Shuai, Z. Y. Sun, S. Kubono, S. T. Wang, G. Q. Xiao, X. Xu, Y. D. Zang, H. W. Zhao, T. C. Zhao, W. Zhang, W. L. Zhan (IMP-CAS, Lanzhou, China) Yu.A. Litvinov, S.Typel (GSI, Darmstadt, Germany) K. Blaum (MPIK, Heidelberg, Germany) Y. Sun (Shanghai Jiao Tong University, Shanghai, China) **Baohua SUN (Beihang University)** H. Schatz, B. A. Brown (MSU, USA) G. Audi (CSNSM-IN2P3-CNRS, Orsay, France) T. Uesaka, Y. Yamaguchi, (RIKEN, Saitama, Japan) T. Yamaguchi (Saitama University, Saitama, Japan) A. Ozawa (University of Tsukuba, Japan)

Yhzhang@impcas.ac.cn

Institute of Modern Physics, CAS, Lanzhou

Thank you for your attention !

Procedure of Data analysis

⁵⁸Ni beam: Mass Excesses of Tz = -1 nuclei

Atom	N	σ_t	FWHM	ME _{CSRe}	$ME_{AME'12}$	δME
		(ps)	(keV)	(keV)	(keV)	(keV)
^{44}V	68	1.24	391	-23818(20)	-24120(180)	302
^{44m}V	49	1.27	100	-23584(24)	$-23850(210)^{\#}$	266
⁴⁶ Cr	195	1.13	373	-29471(11)	-29474(20)	3(23)
⁴⁸ Mn	198	0.68	242	-29299(7)	-29320(170)	21(170)
⁵⁰ Fe	342	0.76	277	-34477(6)	-34490(60)	13(60)
⁵² Co	194	0.66	246	-34361(8)	$-33990(200)^{\#}$	$-371(200)^{\#}$
^{52m} Co	129	0.75	277	-33974(10)	$-33610(220)^{\#}$	$-364(220)^{\#}$
⁵⁴ Ni	688	0.54	226	-39278(4)	-39220(50)	-58(50)
⁵⁶ Cu	64	0.70	276	-38643(15)	$-38240(200)^{\#}$	$-403(200)^{\#}$
⁴⁵ V	687	1.94	651	-31885(10)	$-31885.3(9)^*$	0.5(10)
⁴⁷ Cr	1083	2.19	791	-34565(10)	-34561(7)	-4(12)
⁴⁹ Mn	561	2.21	816	-37607(14)	$-37620.3(24)^{*}$	13(14)
⁵¹ Fe	760	2.37	932	-40198(14)	-40202(9)	4(17)

3. Mass of IAS in ⁵²Co and β^+ decay of ⁵²Ni

4. Summary

Beams: ⁵⁶Ni, ⁷⁸Kr, ⁸⁶Kr, ¹¹²Sn

- 1. B. Mei et al., NIM A 624, 109 (2010)
- 2. X. L. Tu et al., PRL 106, 112501 (2011)
- 3. X. L. Tu et al., NIM A 654, 213 (2011)
- 4. Y. H. Zhang et al., PRL 109, 102501 (2012)
- 9. X. L. Yan et al. Astrophys. J. Lett. 766, L8 (2013)
- 11. H. S. Xu et al., IJMS 349, 162 (2013)
- 12. X. L. Tu et al., J. Phys. G41, 025104 (2014)
- 13. W. Zhang et al., NIM A 756, 1 (2014)
- 14. B. Mei et al., Phys. Rev. C 89, 054612 (2014)
- 15. P. Shuai et al., Phys. Lett. B 735,327 (2014)