

Excess of J/ ψ yield at very low p_T in Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV and U+U collisions at $\sqrt{s_{NN}} = 193$ GeV with STAR

Wangmei Zha for the STAR Collaboration

University of Science and Technology of China

International Nuclear Physics Conference 2016, Sep. 10, 2016, Adelaide, Australia

J/ψ production modification in hadronic A+A collisions

Hot medium effects:

- Color Screening
 -"Smoking gun" signature for QGP
- Regeneration
 -Recombination of charm quarks
- Cold Nuclear Matter effects:
 ✓ PDF modification in nucleus
 - ✓ Initial state energy loss
 - ✓ Cronin effect
 - ✓.....

The interplay of these effects can explain the results from SPS to LHC!

Introduction to photon interactions in A+A

Studied in detail for Ultra-Peripheral Collisions (UPC)
 ✓ UPC conditions: b > 2R_A, no hadronic interactions

- This large flux of quasi-real photons makes a hadron collider also a photon collider!
- Photon-nucleus interactions:
 - Coherent: emitted photon interacts with the entire target nucleus.
 - Incoherent: emitted photon interacts with nucleon or parton individually.

Features of coherent photon-nucleus interaction

• Coherently:

- ✓ Both nuclei remain intact
- ✓ Photon/Pomeron wavelength $\lambda = \frac{h}{n} > R_A$
- ✓ $p_T < h/R_A$ ~30 MeV/c for heavy ions
- ✓ Strong couplings ($Z\alpha_{EM} \sim 0.6$) → large cross sections

Interference:

- Two indistinguishable processes (photon from A₁ or A₂)
- ✓ Vector meson → opposite signs in amplitude
- ✓ Significant destructive interference for p_T << 1/

Excess of J/ ψ production at very low p_T with ALICE

- ✓ Significant enhancement of J/ψ yield observed in p_T interval 0 – 0.3 GeV/c for peripheral collisions (50 – 90%).
- Can not be described by hadronic production modified by the hot medium or cold nuclear matter effects!
- Origin from coherent photonnucleus interactions?

Measurement of J/ψ yield at very low p_T in hadronic collisions (U+U and Au+Au):

- > Enhancement of J/ ψ yield at very low p_T?
- If so, what are the properties and origin of the excess?
 - \succ p_T ,centrality and system size dependence of the excess; t distribution.

STAR detector

Large acceptance: |η| < 1, 0 < φ < 2π</p>

Time Projection Chamber (TPC) – tracking, particle identification, momentum

Time of Flight detector (TOF) – particle identification

Barrel ElectroMagnetic Calorimeter (BEMC) – electron identification, triggering

Electron Identification

1 1.5 2 2.5 3 3.5 4 4.5 5 _{p/E}

0 0

0.5

Normalized dE/dx ($n\sigma_e$) distribution before and after TOF cuts

J/ψ signal

J/ψ invariant yield in Au+Au and U+U Collisions

J/ψ yield at very low p_T versus centrality

 Low p_T J/ψ from hadronic production is expected to increase dramatically with N_{part}.

✓ No significant centrality dependence of the excess yield!

✓ No significant difference between Au+Au and U+U collisions.

J/ψ dN/dt distribution for Au+Au 40-80%

Phys. Rev. C **77** 4910 (2008) ρ^0 cross-section as a function of the momentum transfer squared ($t \approx p_T^2$) from STAR UPC measurements.

The slope from the exponential fit reflects the size and shape of target.

- ✓ Similar structure to that in UPC case!
- ✓ Indication of interference!
 - ✓ Interference shape from calculation for UPC case PRL 84 2330 (2000)
- ✓ Similar slope parameter!
 - Slope from STARLIGHT prediction in UPC case – 196 (GeV/c)⁻²
 - ✓ Slope w/o the first point: $199 \pm 31(\text{GeV/c})^{-2}$ $\chi^2/NDF = 1.7/2$
 - ✓ Slope w/ the first point: $164 \pm 24(\text{GeV/c})^{-2}$ $\chi^2/NDF = 5.9/3$

J/ ψ p+p baseline extraction from world-wide data

- ✓ The scaled rapidity and p_T distributions follow a universal trend.
- ✓ pp baseline at very low p_T is interpolated from the worldwide experimental data.

J/ψ R_{AA} for Au+Au and U+U collisions

Summary

> Significant excess of J/ ψ yield at p_T interval 0 – 0.2 GeV/c is observed for peripheral collisions (40 – 80%).

The excess trend shows no significant centrality dependence (30 – 80%) within uncertainties, which is beyond the expectation from hadronic production.

 The properties of the excess are consistent with the physical picture of coherent photon-nucleus interactions.
 ✓ Similar dN/dt distribution to that in UPC case.

- ✓ Indication of interference at p_T interval 0 0.03 GeV/c.
- The extracted nuclear form factor slope is consistent with nucleus size.

Discussion and outlook

- Challenges for theoretical calculations in hadronic peripheral collisions:
 - How do the broken nucleus satisfy the condition of coherence?
 - No significant dependence of production on impact parameter?
 - The coherent cross section increases dramatically with decreasing impact parameter in UPC collisions.
 - Cancellation of photon flux in the overlapping region of colliding nuclei for hadronic peripheral collisions.
 - How large is incoherent contribution?
 - Can the products of coherent photon-nucleus interactions serve as a probe to test the cold and hot medium effects?
- ➢ Future experimental measurements:
 - > More differential measurements for J/ψ .
 - The excess of other vector meson (ρ , ω , ϕ , Υ ...) in hadronic collisions?
 - The excess of photon-photon process (π^0 , η , η' , f₂(1270), a₂(1320), $\pi^++\pi^-$, e⁺+e⁻, $\mu^++\mu^-$...)?

Phys. Rev. C60, 014903 (1999)