Schiff Moments Of Xe Isotopes In The Nuclear Shell Model

N.Yoshinaga 1, E. Teruya 1, K. Higashiyama 2

¹Department of Physics, Saitama University ² Department of Physics, Chiba Institute of Technology

> Sep. 13 2016 @INPC2016

Outline of talk

1. What are Schiff moment and EDM

- Backgrounds
- Definition of the Schiff moment

2. Framework

- Framework of the Shell Model calculations
- Framework of the Schiff Moment calculations

3. Results

- Schiff moments
- Evaluation of EDM

4. summary

1. What are Schiff moment and electric dipole moment?

What is the electric dipole moment : EDM

- For a point-like particle at rest, EDM d is proportional to the spin $\dot{\sigma}$ $d = d\sigma$
- Interaction between the EDM and the external electric field E is $H = -d \cdot E = -d\sigma \cdot E$

Existence of the EDM indicates violation of time-reversal invariance

T violation relates with CP invariance from the CPT theorem

Atomic EDMs and Schiff moments

- For EDMs of diamagnetic atoms, Nuclear Schiff moment is important.
- The EDM of a neutral diamagnetic atom is induced mainly by the <u>nuclear Schiff moment</u>

, which gives the leading order contribution to the EDM that is not canceled if the system consists of finite size particles

Schiff theorem L. I. Schiff, Phys. Rev. **132**, 2194 (1963).

We cannot observe the EDM of a neutral system that consists of point-like particles such as a nucleus and electrons, even though they have EDMs themselves.

Schiff moment : definition

Effective electric potentials for electrons surrounding the atomic nucleus $e\Phi_{eff}(\mathbf{r}) = \langle \mathbf{0}_N | e\Phi(\mathbf{r}) + \frac{1}{7} \langle e\mathbf{r} \rangle_N \cdot \Phi(\mathbf{r}) | \mathbf{0}_N \rangle \equiv -\frac{Ze^2}{r} + 4\pi e\mathbf{S} \cdot \nabla \delta(\mathbf{r}) + \cdots$ **Schiff moment operator** k = 1, 2, 3, = x, y, z $\hat{S}_{k} = \frac{1}{10} \int \left(r^{2} r_{k} - \frac{5}{3} \left\langle r^{2} \right\rangle_{ch} r_{k} - \frac{2}{3} \left\langle Q_{kk'} \right\rangle r_{k'} \right) \rho(\vec{r}) d\vec{r}$ \mathbf{I} $\mathcal{V}_{\mathbf{i}}$: position of the *i*th nucleon $\langle Q_{kk'} \rangle$: quadrupole moment

 $\langle r^2 \rangle_{ch}$: nuclear charge mean square radius

- $\rho(r)$
 - : nuclear charge distribution

 $\langle Q_{kk'} \rangle = 0$ for the spin $I = \frac{1}{2}$ ground state

Schiff moment operator in terms of nucleons

Schiff moment operator (for *I* = 1/2 states)

$$\hat{\mathbf{S}} = \frac{1}{10} \sum_{i}^{A} e_{i} \left(r_{i}^{2} \mathbf{r}_{i} - \frac{5}{3} \left\langle r^{2} \right\rangle_{ch} \mathbf{r}_{i} \right)$$
$$e_{i} = \begin{cases} 0 \quad \text{(for neutrons)} \\ e \quad \text{(for protons)} \end{cases}$$

- \hat{r}_i : position of the *i*th nucleon
- $\left\langle r^2 \right\rangle_{ch}$: nuclear charge mean square radius

Schiff moment

$$S = \left\langle I^{\pi} \right| \hat{S}_{z} \left| I^{\pi} \right\rangle$$

 $|I^{\pi}\rangle$: Ground state wavefunction with spin *I* and parity π , including PT violating components

Evaluation of Schiff Moment

• If P and T violating interaction V^{PT} exists $H = H_0 + V^{PT}, \quad H_0 |I_i^{\pi}\rangle = E_i^{\pi} |I_i^{\pi}\rangle$

, using perturbation theory for the ground state $\left|I_{1}^{*}
ight
angle$

$$S = \sum_{k \neq 1} \frac{\left\langle I_1^+ \left| \hat{S}_z \right| I_k^- \right\rangle \left\langle I_k^- \left| \hat{V}_{\pi(T)}^{PT} \right| I_1^+ \right\rangle}{E_1^+ - E_k^-} + c.c.$$

• <u>isoscalar</u> $V_{\pi(0)}^{PT} = F_0 \overline{g}^{(0)} g(\tau_1 \cdot \tau_2) (\sigma_1 - \sigma_2) \cdot r f(r)$

• <u>isovector</u> $V_{\pi(1)}^{PT} = F_1 \overline{g}^{(1)} g \left[\left(\tau_{1z} + \tau_{2z} \right) \left(\stackrel{\mathbf{r}}{\mathcal{O}}_1 - \stackrel{\mathbf{r}}{\mathcal{O}}_2 \right) + \left(\tau_{1z} - \tau_{2z} \right) \left(\stackrel{\mathbf{r}}{\mathcal{O}}_1 + \stackrel{\mathbf{r}}{\mathcal{O}}_2 \right) \right] \cdot \stackrel{\mathbf{r}}{r} f(r)$

• <u>isotensor</u> $V_{\pi(2)}^{PT} = F_2 \overline{g}^{(2)} g \left(3\tau_{1z}\tau_{2z} - \overset{\mathbf{r}}{\tau_1} \cdot \overset{\mathbf{r}}{\tau_2} \right) \left(\overset{\mathbf{r}}{\sigma_1} - \overset{\mathbf{r}}{\sigma_2} \right) \cdot \overset{\mathbf{r}}{r} f(r)$

 $f(r) = \frac{\exp(-m_{\pi}r)}{m_{\pi}r^{2}} \left(1 + \frac{1}{m_{\pi}r}\right) \quad \text{P. Herczeg, Hyperfine Interact. 75, 127 (1992)}$

2. framework

- Shell model framework
- Schiff moment framework

Shell model frame work

- For the ground state $|I_1^{\pi}\rangle$ and excited states for Xe isotopes
- Neutrons and protons in five oribitals between magic numbers 50 and 82

Nuclear ground and excited states

• In order to obtain the ground and excited state $|I_i^{\pi}\rangle$ of Xe isotopes, we diagonalize the hamiltonian which does not break P and T.

$$\boldsymbol{H}_{0}\left|\boldsymbol{I}_{i}^{\pi}\right\rangle = \boldsymbol{E}_{i}^{\pi}\left|\boldsymbol{I}_{i}^{\pi}\right\rangle$$

 H_0 = Pairing + QQ + Multipole-interaction

K. Higashiyama, et. al., Phys. Rev. C. 83, 034321 (2011).

Shell model results

K. Higashiyama et al, Phys. Rev. C 83, 034321 (2011).

Intermediate states

$$S = \sum_{k \neq 1} \frac{\left\langle I_1^+ \left| \hat{S}_z \right| I_k^- \right\rangle \left\langle I_k^- \left| \hat{V}_{\pi(T)}^{PT} \right| I_1^+ \right\rangle}{E_1^+ - E_k^-} + c.c.$$

- As for intermediate states, we take one-particle and one-hole states
- For the intermediate states negative parity orbitals over-shell excitation (82<) core excitation (>50)

1p-1h states (explicitly)

• Intermediate states (approximately as 1p-1h states $|I_k^-\rangle$; $|(ph)L;I^-\rangle = N_{ph}^{(L)} \left[\left[c_{p\pi}^{\dagger} \partial_{h\pi}^{\prime} \right]^{(L)} \left| I_1^+ \right\rangle \right]_M^{(I)}$ $c_{p\pi}^{\dagger}$: proton creation operator for orbital p $\partial_{h\pi}^{\prime}$: proton annihilation operator for orbital h $N_{ph}^{(L)}$: Normalization constant

$$S = \sum_{k=1}^{k} \frac{\left\langle I_{1}^{+} \left| \hat{S}_{z} \right| I_{k}^{-} \right\rangle \left\langle I_{k}^{-} \left| \hat{V}_{\pi(T)}^{PT} \right| I_{1}^{+} \right\rangle}{E_{1}^{+} - E_{k}^{-}} + c.c.$$

$$= \sum_{k=1}^{k} \frac{\left\langle I_{1}^{+} \left| \hat{S}_{z} \right| (ph)L; I^{-} \right\rangle \left\langle (ph)L; I^{-} \left| \hat{V}_{\pi(T)}^{PT} \right| I_{1}^{+} \right\rangle}{E_{h}^{+} - E_{p}^{-}}$$
Energy denominator is approximated as one-particle one-hole energies
$$= \sum_{k=1}^{k} \frac{\left\langle I_{1}^{+} \left| \hat{S}_{z} \right| (ph)L; I^{-} \right\rangle \left\langle (ph)L; I^{-} \left| \hat{V}_{\pi(T)}^{PT} \right| I_{1}^{+} \right\rangle}{E_{h}^{+} - E_{p}^{-}}$$

$$= C.C.$$

 $\mathcal{E}_h^+, \mathcal{E}_p^-$: single particle energies of hole and particle states

Tabulation of Schiff moment

$$S = a_0 \ \overline{g}^{(0)}g + a_1 \ \overline{g}^{(1)}g + a_2 \ \overline{g}^{(2)}g$$

 $\overline{g}^{(T)}$: T = 0, 1, 2

unknown parameters breaking *P* and *T*

 $g \approx 13.5$ Strong coupling constant

3. results

- Numerical results for Schiff moment
- The upper limit of atomic EDMs

Schiff moment results

◆ Schiff moment of ¹²⁹Xe

isospin	over-shell	core	sum
a_0	0.929	2.910	3.838
a_1	0.392	1.146	1.538
a_2	1.426	3.963	5.389

in units of 10^{-3}

 contribution from core excitations are larger

Same isospin dependence

The upper limit of the atomic EDM

• Theoretical result (isoscalar part) $S(^{129}\text{Xe}) = 3.84 \times 10^{-3} \overline{g}^{(0)} g \, e \text{fm}^3$

The relation between the Schiff moment and the atomic EDM

$$d_{Atom}\left({}^{129}\text{Xe}\right) = 0.38 \times 10^{-17} \left(\frac{S}{e \text{fm}^3}\right) e \text{cm}$$

V. A. Dzuba, V. V. Flambaum, J. S. M. Ginges and M. G. Kozlov, Phys. Rev. A **66** (2002),012111.

• from the ¹⁹⁹Hg experiment $\left|\overline{g}^{(0)}g\right| < 1.1 \times 10^{-10}$

W. C. Griffith, *et.* al., Phys. Rev. Lett. **102**, 101601 (2009).

The upper limit of atomic EDM :

$$\left| d_{Atom} \left({}^{129} \text{Xe}_{g.s.} \right) \right| < 1.61 \times 10^{-30} e \text{cm}$$

cf. experimental upper limits :

$$|d_{Atom} (^{129} \text{Xe})| < 4.1 \times 10^{-27} e \text{cm}$$

 $|d_{Atom} (^{199} \text{Hg})| < 7.4 \times 10^{-30} e \text{cm}$

The upper limit of the atomic EDM by SM

PT-violating strong πNN coupling constants in the Standard Model estimated by *Yamanaka* et al. *N. Yamanaka and E. Hiyama, JHEP 02 (2016) 067.*

 $\overline{g}^{(0)} = -1.1 \times 10^{-17}$ $\overline{g}^{(1)} = -1.3 \times 10^{-17}$ $\left| d_{SM} \left({}^{129} \text{Xe} \right) \right| = 3.0 \times 10^{-36} e\text{cm}$ $\overline{g}^{(2)} = +3.3 \times 10^{-21}$

> cf. an experimental upper limit:

 $|d_{Exp}(^{129}\text{Xe})| < 4.1 \times 10^{-27} \text{ ecm}$

Observation of larger EDM than this value indicates New Physics beyond the Standard Model.

- Nuclear Schiff moments of 1/2⁺ states for Xe isotopes are estimated. With obtained Schiff moments,
 upper limits of atomic EDMs are evaluated.
 The orbital dependence on Schiff moments is large
- contribution of core excitations are lager than over-shell excitations = 3.84 × 10⁻³ $\overline{g}^{(0)}g$ + 1.54 × 10⁻³ $\overline{g}^{(1)}g$ + 5.39 × 10⁻³ $\overline{g}^{(2)}g$

Future researches

Other regions (Octupole correlations)
 ²²⁵Ra (A~220)

Our results

$$S(^{129}\text{Xe}) = 3.84 \times 10^{-3} \,\overline{g}^{(0)}g + 1.54 \times 10^{-3} \,\overline{g}^{(1)}g + 5.39 \times 10^{-3} \,\overline{g}^{(2)}g$$

Results by Dmitriev V. F. Dmitriev, et. al., Phys. Rev. C. 71, 035501 (2005). With core polarization (many body effects from even-even core) $S(^{129}\text{Xe}) = 8.00 \times 10^{-3} \overline{g}^{(0)}g + 6.00 \times 10^{-3} \overline{g}^{(1)}g - 9.00 \times 10^{-3} \overline{g}^{(2)}g$

Note that definitions of tensor type V_{PT} has a sign difference

Our results are consistent with Dmitriev's results !

TABLE V. Effects of core polarization on the Schiff moment for neutron-odd nuclei, for finite range weak interaction. The bare values of the Schiff moment, without core polarization, are listed in the first line for each nucleus. The units are $e \text{ fm}^3$.

	<i>8s</i> 80	$g_{s}g_{1}$	<i>8s8</i> 2	Bare values
¹⁹⁹ Hg	-0.09	-0.09	0.18	With core polarization
¹⁹⁹ Hø	-0.00004	-0.055	0.009	4 million and a second s
¹²⁹ Xe	0.06	0.06	-0.12	
¹²⁹ Xe	0.008	0.006	-0.009	K
²¹¹ Rn	-0.12	-0.12	0.24	-
²¹¹ Rn	-0.019	0.061	0.053	
²¹³ Ra	-0.12	-0.12	0.24	-
²¹³ Ra	-0.012	-0.021	0.016	
²²⁵ Ra	0.08	0.08	-0.16	-
²²⁵ Ra	0.033	-0.037	-0.046	_

V. F. Dmitriev, et. al., Phys. Rev. C. 71, 035501 (2005).

Our group: ¹²⁹Xe, shell model

Shell Model Estimate of Nuclear Electric Dipole
Moments, "Intrinsic Schiff Moment"
N. Yoshinaga, K. Higashiyama, and R. Arai, Prog. Theor.
Phys. 124, 1115 (2010).

Nuclear Schiff moments for the lowest 1/2⁺ states in Xe isotopes, "PT-violating Schiff Moment" N. Yoshinaga, K. Higashiyama, R. Arai, and E. Teruya, Physical Review C **87**, 044332(2013).

Nuclear electric dipole moments for the lowest 1/2⁺ states in Xe and Ba isotopes,

N. Yoshinaga, K. Higashiyama, R. Arai, and E. Teruya, Physical Review C **89**, 045501 (2014).

"Nuclear Electric Dipolemoment"

Global analysis for coefficients

The story can be reversed. Using the relation between Schiff moments and the PT-violating coupling constants and the experimental upper limits, we can estimate the coupling constants.

$$S = a_0 \ \overline{g}^{(0)}g + a_1 \ \overline{g}^{(1)}g$$
 Our new results for ¹²⁹Xe

Experimental data from TlF molecule, ¹⁹⁹Hg, ¹²⁹Xe, and neutron.

	C _T (107)	$\overline{g}^{(0)}$ (10-10)	<u></u> <i>g</i> ⁽¹⁾ (10- ¹⁰)	d ^{sr} (10-24)
Chupp et al.	1.265	-6.687	1.431	9.878
Our calculation	1.409	-7.431	1.476	11.13

T. Chupp and M. Ramsey-Musolf, Phys. Rev. C 91, 035502 (2015).

In the isospin base, the general CP-odd one-kaon exchange nuclear force can be written as

$$H_{I\!\!PT}^{K} = \frac{1}{2m_{N}} \left\{ \bar{G}_{K}^{(0')} \sigma_{-} \cdot \nabla \mathcal{Y}_{K}(r) + \bar{G}_{K}^{(0)} \tau_{1} \cdot \tau_{2} \sigma_{-} \cdot \nabla \mathcal{Y}_{K}(r) + \frac{1}{2} \bar{G}_{K}^{(1')} \left(\tau_{+}^{z} \sigma_{-} + \tau_{-}^{z} \sigma_{+} \right) \cdot \nabla \mathcal{Y}_{K}(r) + \frac{1}{2} \bar{G}_{K}^{(1')} \left(-\tau_{+}^{z} \sigma_{-} + \tau_{-}^{z} \sigma_{+} \right) \cdot \nabla \mathcal{Y}_{K}(r) + \bar{G}_{K}^{(2)} \left(3\tau_{1}^{z}\tau_{2}^{z} - \tau_{1} \cdot \tau_{2} \right) \sigma_{-} \cdot \nabla \mathcal{Y}_{K}(r) \right\},$$

$$(2.108)$$

$$egin{aligned} ar{G}_K^{(0')} &= 5.4 imes 10^{-16}, \ ar{G}_K^{(0)} &= 9.9 imes 10^{-18}, \ ar{G}_K^{(1)} &= -1.3 imes 10^{-16}, \ ar{G}_K^{(1')} &= -4.0 imes 10^{-17}, \ ar{G}_K^{(2)} &= -4.1 imes 10^{-21}. \end{aligned}$$

Relativistic effect

V. V. Flambaum and A. Kozlov, PRC 85, 068502 (2012)

$$\mathbf{S}' = \frac{Ze}{10} \frac{1}{1 - \frac{5}{14}Z^2 \alpha^2} \left\{ \left[\langle \mathbf{r}r^2 \rangle - \frac{5}{3} \langle \mathbf{r} \rangle \langle r^2 \rangle - \frac{2}{3} \langle r_i \rangle \langle q_{ij} \rangle \right] - \frac{5}{28} \frac{Z^2 \alpha^2}{R_N^2} \left[\langle \mathbf{r}r^4 \rangle - \frac{7}{3} \langle \mathbf{r} \rangle \langle r^4 \rangle - \frac{4}{3} \langle r_i \rangle \langle q_{ij} r^2 \rangle \right] \right\}.$$
(23)

The magnetic moment effect

S. G. Porsev, J. S. M. Ginges, and V. V. Flambaum, PRA 83, 042507 (2011)