Cluster Dscay of the High-lying Excited States in ¹⁴C

Yanlin Ye School of Physics and State Key Lab of Nuclear Physics and Technology, Peking University

INPC2016, Sept. 11-16, 2016, Adelaide, Australia

Collaborators

Z.Y. Tian(田正阳) Y.L. Ye (叶沿林)^{1;1)} Z.H. Li(李智焕)¹ C.J. Lin(林承键)² Q.T. Li(李奇特)¹
Y.C. Ge(葛愉成)¹ J.L. Lou(楼建玲)¹ W. Jiang(蒋伟)¹ J. Li(李晶)¹ Z.H. Yang(杨再宏)¹
J. Feng(冯俊)¹ P.J. Li(李朋杰)¹ J. Chen(陈洁)¹ Q. Liu(刘强)¹ H.L. Zang(臧宏亮)¹
B. Yang(杨彪)¹ Y. Zhang(张允)¹ Z.Q. Chen(陈志强)¹ Y. Liu(刘洋)¹ X.H. Sun(孙晓慧)¹
J. Ma(马竞)¹ H.M. Jia(贾会明)² X.X. Xu(徐新星)² L. Yang(杨磊)² N.R. Ma(马南茹)² L.J. Sun(孙立杰)²
¹ School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, 100871, China

Outline

I. Some background

- **II. The experiment**
- **III. Preliminary results**
- **IV. Summary**

The threshold rule in cluster formation

464 Supplement of the Progress of Theoretical Physics, Extra Number, 1968

The Systematic Structure-Change into the Molecule-like Structures in the Self-Conjugate 4n Nuclei

Kiyomi IKEDA,*) Noboru TAKIGAWA and Hisashi HORIUCHI

niversity of Tokyo, Tokyo

"Ikeda diagram"

Clustering in unstable nuclei – a new area

W.Von Oerttzen et al., Phys. Report 432(06)43

Y. Kanada-En'yo et al., Prog. Theor. Exp. Phys., 2012, 01A202

Possible chain states based on α-cores

W.Von Oerttzen et al., Z. Phys. A357(97)355.

Example of studies for ^x**Be**

^xC: triangle, and π -bond or σ -bond linear-chain states

FIG. 2. (color online) The density distribution of (a)-(d) the positive states and (e)-(h) negative parity states. The contour lines show the proton density distributions. The color plots show the single particle orbits occupied by the most weakly bound neutron. Open boxes show the centroids of the Gaussian wave packets describing protons.

π -bond or σ -bond

most exotic one: σ-bond linear-chain state

T. Baba and M. Kimura arXiv:1605/05567v1

Latest AMD calculations for ¹⁴C

T. Baba and M. Kimura arXiv:1605/05567v1

Major improvements:

- Gogny D1S force to better describe E_x;
- Projected single particle wave function for valence neutrons to distinguish the π-bond or σ-bond states;
- core excitation included and the reduced decay-width deduced accordingly.

$$E'^{\pi} = \frac{\langle \Phi^{\pi} | H | \Phi^{\pi} \rangle}{\langle \Phi^{\pi} | \Phi^{\pi} \rangle} + v_{\beta} (\langle \beta \rangle - \beta_0)^2 + v_{\gamma} (\langle \gamma \rangle - \gamma_0)^2$$

$$\begin{split} \widetilde{\phi}_s &= \sum_{\alpha=1}^A f_{\alpha s} \widetilde{\varphi}_{\alpha} \\ j(j+1) &= \langle \widetilde{\phi}_s | \hat{j}^2 | \widetilde{\phi}_s \rangle, \quad |j_z| = \sqrt{\langle \widetilde{\phi}_s | \hat{j}_z^2 | \widetilde{\phi}_s \rangle}, \\ l(l+1) &= \langle \widetilde{\phi}_s | \hat{l}^2 | \widetilde{\phi}_s \rangle, \quad |l_z| = \sqrt{\langle \widetilde{\phi}_s | \hat{l}_z^2 | \widetilde{\phi}_s \rangle}, \end{split}$$

$$\gamma^2_{lj^{\pi'}}(a) = \frac{\hbar^2}{2\mu a} [ay_{lj^{\pi'}}(a)]^2$$

$$A_{j^{\pi\prime}}(r) = \sqrt{\frac{A!}{4!(A-4)!}} \langle \phi_{\alpha}[\phi_{\mathrm{Be}}(j^{\pi\prime})Y_{l0}(\hat{r})]_{J^{\pi}M} |\Psi_{Mn}^{J^{\pi}}\rangle,$$

T. Baba and M. Kimura arXiv:1605/05567v1

Decay width is related to the cluster-configuration

Previous ¹⁴C experiments with ¹⁰Be*(~6 MeV) selection

Recently reported results: no selection on ¹⁰Be*(~6 MeV)

054324; α(¹⁰Be, α)¹⁰Be,

E_x=13 to 24 MeV

A. Fritsch et al., PRC93(2016)014321; α(¹⁰Be, α)¹⁰Be, *E*_x=15.0 to 20.7 MeV

Possible observation of the triangle-like and π -bond linear-chain states, but not σ-bond states.

Outline

I. Some background

- **II.** The experiment
- **III. Preliminary results**
- **IV. Summary**

Basic considerations for experimentation

- Projectile and target in favor of cluster formation
- Large Q-value reaction in order to excite high lying states in ¹⁴C and to have a good selection of the states in ¹⁰Be fragment;
- MM + IM measurements in order to extract the reduced cluster-decay width from branching ratio.

selected reaction (5 AMeV beam; 185 ug/cm² target) : ${}^{9}Be + {}^{9}Be \rightarrow {}^{4}He + {}^{14}C$ Q=17.25 MeV a ${}^{4}He + {}^{10}Be$ Q=5.239 MeV 4C

main contamination in Q-value:

Experiment setup at CIAE

Detector		Segmen- tation		Thickness (μm)		Covering angle (degree)	Purpose	
Telescope U0&D0		U0&D0 are symme- trical				13-33	10Beα fr Alpha 〔1	rom 14C 4C)
DSSD		16 x 16		64			ΔE	
DSSD		32x32		500			E	
SSD				1500			E(4He)	
Telescope U1&D1		U0&D0 are symme- trical				48-72	Alpha(1	4C)
DSSD		16*16		60			ΔE	
SSD				1500			E	
Telescope U2&D2		symmetrical				97-121	Alpha(14C)	
DSSD		16		20			ΔΕ	
SSE	SSD				1500		E	
	Bea	ım	۶Be	9	4	5MeV	~7enA	
Targ		9Be		e 0.9um				

Typical PID at forward angles

⁹Be(⁹Be,¹⁴C[¹⁰Be+α])α

Outline

- I. Some background
- **II. The experiment**
- **III. Preliminary results**
- **IV. Summary**

Missing mass method (inelastic or transfer)

Invariant mass method

Comparison of *Q***-values**

Soic et al.: ⁷Li(⁹Be, α ¹⁰Be)d, E_{beam}=70 MeV, PID for forward ¹⁰Be + α, deduced recoil α . Present work: ⁹Be(⁹Be, α ¹⁰Be)α, E_{beam}=45 MeV, PID for forward ¹⁰Be + α, deduced recoil α .

Kinematics check

Comparison of IM spectra for various ¹⁰**Be states**

Outline

I. Some background

- **II. The experiment**
- **III. Preliminary results**
- **IV. Summary**

- A reaction with very large Q-value was carried out, allowing to excite ¹⁴C to very high lying states and to clearly separate the various states in ¹⁰Be fragment.
- Three highly excited states in ¹⁴C are observed which decay primarily into ¹⁰Be*(~6 MeV), corresponding likely to the σ-bond linear-chain states according to the latest AMD model predictions.
- Further analysis of the cluster-decay branching ratio, related to the cluster reduced width, are underway in order to make quantitative comparison with theoretical calculations.

Thank you for your attention!