Inelastic Neutron Scattering Studies: Relevance to Neutrinoless Double-β Decay

Steven W. Yates

INPC Adelaide 11-16 September 2016

Double-β Decay

Decay Rates of $2\nu\beta\beta$ and $0\nu\beta\beta$

$$T_{1/2}^{2\nu}(^{76}Ge) = 1.84 \times 10^{21} yr$$

$$T_{1/2}^{0\nu}({}^{76}Ge) = 1.19 \times 10^{25} yr$$

 $T_{1/2}^{0\nu}(^{76}Ge) > 2.1 \times 10^{25} yr$

M. Agostini et al. (GERDA), *J. Phys. G: Nucl. Part. Phys.* **40** 035110 (2013)

H.V. Klapdor-Kleingrothaus, I.V. Krivoshina, A. Dietz, and O. Chkvorets, Phys. Lett. B **586**, 198 (2004)

M. Agostini et al. (GERDA), PRL **111**, 122503 (2013)

Comparison of calculated nuclear matrix elements for 0vββ candidates

J. Barea, J. Kotila, and F. Iachello, Phys. Rev. 91, 034304 (2015).

Comparison of calculated nuclear matrix elements for 0vββ candidates

J. Barea, J. Kotila, and F. Iachello, Phys. Rev. 91, 034304 (2015).

Current Searches for ⁷⁶Ge 0vββ

MAJORANA DEMONSTRATOR

30 kg 86% ⁷⁶Ge + 10 kg ^{nat}Ge SURF, SD, USA

http://neutrino.lbl.gov/majorana.htm

40 kg 86% ⁷⁶Ge Gran Sasso, Italy

http://www.mpi-hd.mpg.de/gerda/

INS Experiments

From Inelastic Neutron Scattering

- Level scheme: J^{π}
- Transition multipolarities: E1, E2, E3, M1...
- Multipole mixing ratios: δ(E2/M1)
- Level lifetimes: τ
- Transition probabilities: B(λ)
- Cross sections/Backgrounds: σ

2747.8 2697.3

⁷⁶Ge(n,n'γ) Excitation Functions

Doppler-Shift Attenuation Method

$$\mathsf{E}(\theta) = \mathsf{E}_{\gamma} \left(1 + v/c \cos \theta \right)$$

The nucleus is recoiling into a viscous medium.

$$v \rightarrow v(t) = F(t)v_{max}$$

 $E(\theta) = E_{\gamma} (1 + F(\tau) v/c \cos \theta)$

Level Lifetimes: Doppler-Shift Attenuation Method (DSAM)

 180° γ° γ°

Scattered neutron causes the nucleus to recoil. Emitted γ rays experience a Doppler shift. Level lifetimes in the femtosecond region can be determined.

T. Belgya, G. Molnár, and S.W. Yates, Nucl. Phys. A607, 43 (1996). E.E. Peters *et al.*, Phys. Rev. C 88, 024317 (2013).

DSAM

T. Belgya, G. Molnár, and S. W. Yates, Nucl. Phys. A607, 43 (1996).

Why study ⁷⁶Ge?

It is the parent for double- β decay.

It is structurally interesting.

- □ Shape Transition
- □ Shape Coexistence
- □ Rigid Triaxiality

PHYSICAL REVIEW C 87, 041304(R) (2013)

S.

Evidence for rigid triaxial deformation at low energy in ⁷⁶Ge

Y. Toh,^{1,2} C. J. Chiara,^{2,3} E. A. McCutchan,^{2,4} W. B. Walters,³ R. V. F. Janssens,² M. P. Carpenter,² S. Zhu,² R. Broda,⁵ B. Fornal,⁵ B. P. Kay,² F. G. Kondev,⁶ W. Królas,⁵ T. Lauritsen,² C. J. Lister,^{2,*} T. Pawłat,⁵ D. Seweryniak,² I. Stefanescu,^{2,3} N. J. Stone,^{7,8} J. Wrzesiński,⁵ K. Higashiyama,⁹ and N. Yoshinaga¹⁰

Comparison with Shell Model

jun45

Experiment

jj44b

J

IK

Calculations by B. A. Brown

Mixed-Symmetry State

2039-keV Region in the ⁷⁶Ge(n,n'γ) Spectrum

E_n = 3.7 MeV

B.P. Crider et al., Phys. Rev. C 92, 034310 (2015)

Ονββ nuclei studied by INS at UKAL

- ⁴⁸Ca J.R. Vanhoy, et al., Phys. Rev. C 45, 1628 (1992)
- ⁷⁶Ge In progress and B.P. Crider et al., Phys. Rev. C 92, 034310 (2015)
- ⁷⁶Se In progress
- ⁸²Se Planned
- ⁹⁶Zr G. Molnár et al., Nucl. Phys. A500, 43 (1989)
 - T. Belgya et al., Nucl. Phys. A500, 77 (1989)
- ⁹⁶Mo S.R. Lesher et al., Phys. Rev. C 75, 034318 (2007)
- ¹¹⁶Cd M. Kadi et al., Phys. Rev. C 68, 031306R (2003)
- ¹¹⁶Sn S. Raman et al., Phys. Rev. C 43, 521 (1991)
- ¹²⁸Te S.F. Hicks et al., Phys. Rev. C 86, 054308 (2012)
- ¹³⁰Te In progress
- ¹³⁰Xe In progress
- ¹³⁶Xe In progress
- ¹³⁶Ba S. Mukhopadhyay et al., Phys. Rev. C 78, 034317 (2008).
- ¹⁵⁰Nd In progress
- ¹⁵⁰Sm Planned

UK.

Acknowledgments

UKAL Collaborators:

- M. T. McEllistrem
- F. M. Prados-Estévez
- T. J. Ross
- **B. P. Crider**
- S. Mukhopadhyay
- E. E. Peters

Other Collaborators:

J. M. Allmond – ORNL J. R. Vanhoy – U.S. Naval Academy A = 76 Collaboration – Yale, TU Darmstadt, TUNL-HIγS, ANU...

Funding:

This material is based upon work supported by the U.S. National Science Foundation under Grant No. PHY-1606890.