Direct Virtual Photon Production in Au+Au Collisions at $\sqrt{s}\downarrow NN = 200$ GeV at STAR

1. University of Science and Technology of China

International Nuclear Physics Conference 2016, Sep. 10-16, 2016, Adelaide, Australia

Outline

- Motivation
- STAR detector
- Electron identification
- Dielectron production
- Direct virtual photon production
- Summary and outlook

Direct photon and dielectron

----- ideal electroweak probes

- ✓ suffer no strong interaction, traverse the medium with minimum interaction
- ✓ produced throughout all stages of the evolution of the system
 Direct photon:
- ✓ high p_T photons (>5GeV/c) : initial hard scattering
- ✓ low p_T photons (1-5GeV/c) : access QGP production

Similar process for virtual photon production, which could convert into e^+e^- pair.

 $\gamma \uparrow * \rightarrow e \uparrow + e \uparrow -$

Motivation

Dielectron:

- higher invariant mass => earlier production
- Low Mass Region
 - ✓ In-medium modification of vector mesons

Intermediate Mass Region

- ✓ QGP thermal radiation
- ✓ Semi-leptonic decay of correlated charm: charm modification in Au+Au

High Mass Region

- ✓ Heavy quarkonia
- ✓ Drell-Yan process

STAR detectors

Key detectors used in the analysis:

Time Projection Chamber:

- ≻ |η| < 1 0<Φ<2π
- Main tracking detector: track, momenta, ionization energy loss (dE/dx)

Time Of Flight:

- ▶ |η| < 0.9 0<Φ<2π</p>
- Intrinsic timing resolution ~ 75 ps
- Time-of-flight measurement

Barrel Electro-Magnetic Calorimeter:

- ≽ |η| < 1 0<Φ<2π
- Trigger on and measure high-p_T processes

Туре	Year	Central	Min.Bias	EMC trigger (energy threshold 4.3GeV)
Au+Au 200GeV	2010	220M	240M	
	2011		490M	39M
p+p 200GeV	2012		375M	

Electron identification

Time-Of-Flight provides clean electron identification from low to intermediate p_{τ} which enables the dielectron measurements.

17/10/2016

Chi Yang, INPC 2016, Sep. 10-16, Adelaide, Australia

p + *p* S/B : STAR Collaboration, Phys.Rev. C 86, 024906 (2012).

 $M_{ee} < 1 \text{ GeV/c}^2$ Like sign background $M_{ee} >= 1 \text{ GeV/c}^2$ Mixed event background

PHENIX Collaboration, Phys. Rev. C 81, 034911 (2010) STAR Collaboration, Phys. Rev. Lett. 92, 112301 (2004) STAR Collaboration, Phys. Lett. B 612, 181 (2005). STAR Collaboration, Phys. Rev. Lett. 97, 152301 (2006) Z. Tang et al. Phys. Rev. C 79, 051901 (2009)

Phys. Rev. Lett. 113 (2014) 22301

Models show good agreement with data within uncertainty.

1) invariant-mass dependence :

Broadened ρ model calculations can explain STAR data within uncertainties. Our measurements disfavor a pure vacuum ρ model with a $\chi 12 / NDF = 26/8$ in 0.3~1 GeV/c².

[Phys. Rev. Lett. 113 (2014) 22301]

(A) ρ -like region : 0.3~0.76 GeV/c² (B) ω -like region: 0.76~0.80 GeV/c² (C) ϕ -like region: 0.98~1.05 GeV/c²

ω-like and φ-like region (B), (C):
 --- Yield shows N_{part} scaling.
 ρ-like region (A):
 --- Significant excess is observed.

More details in [Phys. Rev. C 92(2015) 024912]

• Relation between real photon yield and the associated e⁺e⁻ pairs:

Low mass dielectron continuum

• 1-3 GeV/c Run10+Run11 MB data

• 5-10 GeV/c Run11 EMC triggered data

The statistical and systematic uncertainties are shown by the bars and bands, respectively.

Chi Yang, INPC 2016, Sep. 10-16, Adelaide, Australia

Two component fit and fraction of direct virtual photon

Direct virtual photon invariant yield

Direct virtual photon invariant yield

No η measurement for cocktail simulation input

17/10/2016

Direct virtual photon invariant yield

In the high p_T range above 6 GeV/c

 the yield is consistent with a T_{AA} scaled fit function to PHENIX pp data.

[A. Adare et al. Phys.Rev.C.81:034911, (2010)] [S.S. Adler et al. Phys.Rev.Lett., 98:012002, (2007)]

In the p_T range 1~3 GeV/c

 ✓ Compared to the pp reference, an excess is observed in 10-40% and 40-80%.

Compared to model prediction

Rapp calculation:

elliptic thermal fireball evolution

(consistent with their (2+1)-D hydrodynamic evolution (beam-direction independent))

Paquet calculation: (2+1)-D hydrodynamic evolution

both models include:

- ✓ QGP thermal radiation
- \checkmark in-medium meson
- \checkmark mesonic interactions in the hadronic gas
- primordial contributions from the initial hard parton scattering

H. van Hees, C. Gale, and R. Rapp [Phys. Rev. C 84, 054906 (2011)]

H. van Hees, M. He, and R. Rapp [Nucl. Phys. A 933, 256 (2015)]

Compared to model prediction

p_T 1-3 GeV/c:

thermal radiation dominant

*p*_T > 6 GeV/c:

initial hard-parton scattering dominant

The comparison shows consistency between both model calculations and measurements within uncertainties for all the other centralities except 40-80% centrality.

40-80% includes peripheral collisions, where hydrodynamic calculations might not be applicable.

H. van Hees, C. Gale, and R. Rapp [Phys. Rev. C 84, 054906 (2011)]

H. van Hees, M. He, and R. Rapp [Nucl. Phys. A 933, 256 (2015)]

Total yield and excess yield

The model calculations are consistent with our measurements within uncertainties in central and semi-central for both excess and total direct photon yield.

> H. van Hees, C. Gale, and R. Rapp [Phys. Rev. C 84, 054906 (2011)]

H. van Hees, M. He, and R. Rapp [Nucl. Phys. A 933, 256 (2015)]

Total yield and excess yield

Comparison	χ^2/NDF	p-value
Excess yield		
STAR data to Rapp	4.26/2	0.119
STAR data to Paquet	2.81/2	0.245
PHENIX data to Rapp	11.1/2	0.0038
PHENIX data to Paquet	16.9/2	2.2e-04
Total yield		
STAR data to Rapp	3.98/2	0.137
STAR data to Paquet	2.78/2	0.249
PHENIX data to Rapp	12.8/2	0.0017
PHENIX data to Paquet	15.0/2	5.6e-04

PHENIX collaboration [Phys. Rev. C 91, 064904 (2015)]

H. van Hees, C. Gale, and R. Rapp [*Phys. Rev. C 84, 054906 (2011)*]

H. van Hees, M. He, and R. Rapp [*Nucl. Phys. A* 933, 256 (2015)]

Summary

- Presented the direct virtual photon measurement (1-3 and 5-10 GeV/c) in Au+Au collisions at STAR at $\sqrt{S}\downarrow NN$ =200GeV
- An enhancement compared with PHENIX p+p results is observed for 1-3 GeV/c in 10-40% and 40-80%
- In the p_T range above 6 GeV/c there is no clear enhancement observed for all the centralities
- Model predictions including the contributions from thermal radiation and initial hardprocesses are consistent with our direct photon yield within uncertainties in central and mid-central collisions
- In 40-80% centrality bin, the model calculation results are systematically lower than our data for $1 < p_T < 3$ GeV/c

Outlook:

Direct photon in 62 GeV Au+Au collisions to study its behavior close to critical temperature May have enough statistics from future RHIC run

Backup

17/10/2016

Chi Yang, INPC 2016, Sep. 10-16, Adelaide, Australia

Background

Like sign background:

- can reconstruct both the combinatorial and correlated background.
- low statistics
- need to correct acceptance difference between unlike sign and like sign ee pair

$$B\downarrow likesign = 2\sqrt{N}\downarrow + N\downarrow - B\downarrow + /2\sqrt{B}\downarrow + B\downarrow -$$

for EMC triggered events in $p\downarrow T > 5 GeV/c$ $B\downarrow likesign = (N\downarrow + + + N\downarrow - -)B\downarrow + - /2\sqrt{B}\downarrow + + B\downarrow -$

N:same event B:mixed event

Mixed event background:

- High statistics
- Do not need to correct acceptance

Can't reconstruct correlated background