

Accessing high momentum nucleons in lattice QCD

Jia-jun Wu

The University of Adelaide Collaborate with W. Kamleh, D. B. Leinweber, R. D. Young, and J. M. Zanotti

INTERNATIONAL NUCLEAR PHYSICS CONFERENCE

ADELAIDE, AUSTRALIA ADELAIDE CONVENTION CENTRE 11 – 16 September 2016

www.inpc2016.com

Outline

- Motivation
- Z3 Noise Dilution Source
- Momentum phase in the smearing
- Comparison
- Outlook

Motivation

• Form factor is important for us to understand the properties of hadron.

JLab, Hall A, PRC85 (2012) 045203

Motivation

- The form factor extracted from Lattice need the information of high momentum hadron.
- The high momentum spectrum suffers a large $G(\vec{p};t) \sim \sum e^{-E_{\alpha}t}$ $V = 24^3 \times 48$ error. P=(2,2,2) P=(0,0,0)2 0 am 0 am -2 -2 -4 -4 8 16 24 32 40 48 0 32 16 24 40 48 8 0

Correlation function of Proton

• Operator for Proton:

$$\chi = \epsilon^{abc} \big(u^{aT} C \gamma_5 d^b \big) u^c$$

• The correlation function:

$$G(\vec{p};\vec{x},t) = \sum_{\vec{y}} \Gamma e^{i\vec{p}.(\vec{y}-\vec{x})} \langle \Omega | \chi(\vec{y},t) \bar{\chi}(\vec{x},0) | \Omega \rangle$$

$$\vec{x} = \sum_{\vec{y}} e^{i\vec{p}.(\vec{y}-\vec{x})} f(S(\vec{y},\vec{x}),S(\vec{y},\vec{x}),S(\vec{y},\vec{x}))$$

Only one source location is calculated Single Source

 $e^{i\vec{p}\cdot(\vec{y}-\vec{x})}f(S(\vec{y},\vec{x}),S(\vec{y},\vec{x}),S(\vec{y},\vec{x}))$

1 source location

$$\sum_{i=1,N} e^{i\vec{p}.(\vec{y}-\vec{x}_i)} f(S(\vec{y},\vec{x}_i),S(\vec{y},\vec{x}_i),S(\vec{y},\vec{x}_i))$$

N source location

Problem: Cost more inversions

• Z3 noise vector:

 $\begin{aligned} \mathbf{\eta}(\vec{x}_n) &= e^{i \, 2r(n)\pi/3}; \quad \mathbf{n} = 0, \, 1, \, 2, \, \dots; \\ \mathbf{r}(\mathbf{n}) \text{ is random number of "0,1,2"} \\ \left\langle \mathbf{\eta}(\vec{x}_i)\mathbf{\eta}(\vec{x}_j)\mathbf{\eta}(\vec{x}_k) \right\rangle &= \delta_{ij}\delta_{jk} \end{aligned}$

• Dilution Source:

pick out N source locations

$$\boldsymbol{\chi}(\vec{y}) = \sum_{i=1,N} \boldsymbol{\eta}(\vec{x}_i) S(\vec{y}, \vec{x}_i)$$

• The correlation function:(at rest $\vec{p} = 0$)

$$G_N(\vec{0};t) = \sum_{\vec{y}} f(\chi(\vec{y}), \chi(\vec{y}), \chi(\vec{y}))$$

Including information of N source locations, still only one inversion, but in the correlation function it will bring a lot noise terms.

 $\vec{\chi}$

 $S(\vec{y}, \vec{x}_i)$

• The correlation function:(at rest $\vec{p} = 0$) $G_N(\vec{p}; t)$

$$= \sum_{\vec{y}} \sum_{i=1,N} f(S(\vec{y}, \vec{x_i}), S(\vec{y}, \vec{x_i}), S(\vec{y}, \vec{x_i}))$$

+
$$\sum_{\vec{y}} \sum_{i,j,k=1,N} \eta(\vec{x_i}) \eta(\vec{x_j}) \eta(\vec{x_k}) (1 - \delta_{ij} \delta_{ik}) f(S(\vec{y}, \vec{x_i}), S(\vec{y}, \vec{x_j}), S(\vec{y}, \vec{x_k}))$$

- The correlation function: (at rest $\vec{p} = 0$) $G_N(\vec{p}; t)$ Signal Term's Error: σ_s
- $= \sum_{\vec{y}} \sum_{i=1,N} f(S(\vec{y},\vec{x_i}),S(\vec{y},\vec{x_i}),S(\vec{y},\vec{x_i})) \sum_{\vec{x_i},\vec{x_i$

Z3 Noise Dilution Source

 $f\left(S(\vec{y}, \vec{x_i}), S(\vec{y}, \vec{x_j}), S(\vec{y}, \vec{x_k})\right)$ smaller and smaller

N can not be too large, i.e., Dilution

Z3 Noise Dilution Source

 $f\left(S(\vec{y}, \vec{x_i}), S(\vec{y}, \vec{x_j}), S(\vec{y}, \vec{x_k})\right)$ smaller and smaller

N can not be too large, i.e., Dilution

Z3 Noise Dilution Source

 $f\left(S(\vec{y}, \vec{x_i}), S(\vec{y}, \vec{x_j}), S(\vec{y}, \vec{x_k})\right)$ smaller and smaller

N can not be too large, i.e., Dilution

 $V = 24^3 \times 48$

$$\vec{x} = (0,0,0) \quad (2,2,2)$$

Z3 Noise Dilution Source

 $f\left(S(\vec{y}, \vec{x_i}), S(\vec{y}, \vec{x_j}), S(\vec{y}, \vec{x_k})\right)$ smaller and smaller

N can not be too large, i.e., Dilution

i.i.k=1.N

Z3 Noise Dilution Source

 $f\left(S(\vec{y}, \vec{x_i}), S(\vec{y}, \vec{x_j}), S(\vec{y}, \vec{x_k})\right)$ smaller and smaller

N can not be too large, i.e., Dilution

- The correlation function: (at rest $\vec{p} = 0$) $G_N(\vec{p}; t)$
- $= \sum_{i=1,N} f(S(\vec{y}, \vec{x_i}), S(\vec{y}, \vec{x_i}), S(\vec{y}, \vec{x_i})) \qquad \begin{array}{l} \text{Signal Terms: } \propto \mathsf{N} \\ \text{Noise Terms: } \propto \mathsf{N}(\mathsf{N}^2-1) \\ + \sum \eta(\vec{x_i})\eta(\vec{x_j})\eta(\vec{x_k})(1 \delta_{ij}\delta_{ik})f(S(\vec{y}, \vec{x_i}), S(\vec{y}, \vec{x_j}), S(\vec{y}, \vec{x_k})) \end{array}$

Z3 Noise Dilution Source

 $f\left(S(\vec{y}, \vec{x_i}), S(\vec{y}, \vec{x_j}), S(\vec{y}, \vec{x_k})\right)$ smaller and smaller

N can not be too large, i.e., Dilution

Z3 Noise Dilution Source

 $f\left(S(\vec{y}, \vec{x_i}), S(\vec{y}, \vec{x_j}), S(\vec{y}, \vec{x_k})\right)$ smaller and smaller

N can not be too large, i.e., Dilution

Signal Terms: $\propto N$ Noise Terms: $\propto N(N^2-1)$

4 points better than2 points better than1 point

8 points almost the same as 4 points

16 points worse than 8 points

Z3 Noise Dilution Source

 $f\left(S(\vec{y}, \vec{x_i}), S(\vec{y}, \vec{x_j}), S(\vec{y}, \vec{x_k})\right)$ smaller and smaller

N can not be too large, i.e., Dilution

Signal Terms: $\propto N$ Noise Terms: $\propto N(N^2-1)$

4 points better than2 points better than1 point

8 points almost the same as 4 points

64 points worse than27 points worse than16 points worse than8 points

Momentum phase in the smearing

Gunnar S. Bali, Bernhard Lang, Bernhard U. Musch, and Andreas Schäfer PRD 93, 094515 (2016)

• Source and Sink Smearing:

$$S^{smearing}(\vec{y}, \vec{x}) = \sum_{\vec{x}_i, \vec{y}_i} f(\vec{y}_i - \vec{y}) f^*(\vec{x}_i - \vec{x}) S(\vec{y}, \vec{x})$$

• Momentum phase:

• This smearing will help to get better signal at large momentum.

Comparison

THE UNIVERSITY

of ADELAIDE

•**

Outlook

Thanks Very Much

Milt-Momentum method

$$\boldsymbol{\chi}_{\vec{p}}(\vec{y}) = \sum_{i=1,N} e^{-i\vec{p}\cdot\vec{x}_i} \boldsymbol{\eta}(\vec{x}_i) S_{\vec{p}}(\vec{y},\vec{x}_i)$$

$$G_{N}(\vec{p}_{1} + \vec{p}_{2} + \vec{p}_{3}; t) = \sum_{\vec{y}} e^{i(\vec{p}_{1} + \vec{p}_{2} + \vec{p}_{3}).\vec{y}} \epsilon^{abc} \epsilon^{a'b'c'} \begin{cases} Tr \left[\chi_{\vec{p}_{1}}^{aa'}(\vec{y})(\gamma_{5}C)\chi_{\vec{p}_{2}}^{bb'}(\vec{y})(\gamma_{5}C)\right] \chi_{\vec{p}_{3}}^{cc'}(\vec{y}) \\ + [\chi_{\vec{p}_{1}}^{aa'}(\vec{y})(\gamma_{5}C)\chi_{\vec{p}_{2}}^{bb'}(\vec{y})(\gamma_{5}C)\chi_{\vec{p}_{3}}^{cc'}(\vec{y})]_{\gamma\gamma'} \end{cases}$$

Four different Momentum Versions:
(0,0,0) (0,0,1)(0,1,1)(1,1,1)

generate 20 different total momentum from (0,0,0) to (3,3,3)