Four- and three-body dynamics in ⁶Li scattering

¹<u>S. Watanabe</u>, ²T. Matsumoto, ³K. Ogata, ²M. Yahiro

¹RIKEN, ²Kyushu University, ³RCNP, Osaka University

13/Sep./2016 International Nuclear Physics Conference (INPC2016) Adelaide Convention Centre, Australia

CDCC & Breakup effects

CDCC Continuum Discretized Coupled Channels

- ✓ CDCC is a fully quantum mechanical method for treating BU effects.
- ✓ CDCC was born as a theory
 for *d*-scattering ⇒ 3-body CDCC

Three-body CDCC has been widely applied to many kinds of scattering.

Problem of 3-body CDCC in ⁶Li scattering

Can 4-body CDCC solve this problem?

Competition: 4-body channel vs 3-body channel

Which of these 4- and 3-body channels is favored in ⁶Li scattering?

Purpose

Purpose 1

We apply 4-body CDCC to ⁶Li scattering to treat both 4-body & 3-body channels explicitly.

Purpose 2

We estimate 4-body and 3-body breakup channel-coupling effects, and clarify the reaction dynamics.

Model Hamiltonian of 4-body CDCC

4-body Schrödinger equation

 $\begin{array}{l} (H \downarrow 4 \mathrm{b} - E) \Psi(\boldsymbol{R}, \boldsymbol{\xi}) = 0 \\ H \downarrow 4 \mathrm{b} = K \downarrow R + U \downarrow n + U \downarrow p + U \downarrow \alpha + e \uparrow 2 \ Z \downarrow \mathrm{Li} \ Z \downarrow \mathrm{Bi} \ /R + h \downarrow \boldsymbol{\xi} \end{array}$

Phenomenological optical potentials

*A. J. Koning et al., NPA 713 (2003), A*³ *R*.³*Barnett et al., PRC 9 (1974), 2010.*

Internal Hamiltonian h_{ξ}

 $(h\downarrow\xi-\varepsilon)\phi\downarrow\varepsilon(\xi)=0$

 $\phi \downarrow \varepsilon$ (**ξ**): ⁶Li internal wf.

 $h\downarrow\xi = T\downarrow \mathbf{r}\downarrow c + T\downarrow \mathbf{y}\downarrow c + V\downarrow np + V\downarrow n\alpha + V\downarrow p\alpha + V\downarrow 3b$

Bonn-A interaction R. Machleidt, Adv. Nucl. Phys. 19, 189 (1989). KKNN interaction H. Kanada et al.,

H. Kanada et al., Theor. Phys. **61**, 1327 (1979).

We have no adjustable parameter from now on.

Result 1: 3-body CDCC vs 4-body CDCC

3-body CDCC cannot reproduce the data.

4-body CDCC is in excellent agreement with the experimental data.

Experimental data

E. F. Aguilera et al., Phys. Rev. Lett. **84**, 5058 (2000). *E. F. Aguilera et al., Phys. Rev. C* **63**, 061603 (2001).

Result 2: Breakup channel-coupling effects

The experimental data is available in a wide energy range (24-210MeV).

Exp

N. Keeley et al., Nucl. Phys. A **571**, 326 (1994). R. Huffman et al., Phys. Rev. C **22**, 1522 (1980). A. Nadasen et al., Phys. Rev. C **39**, 536 (1989).

BU channel-coupling effects are quite important for all the incident energies.

4-body BU channel?3-body BU channel?

Difficulty: In 4-body CDCC, both four- and three-body channels are mixed with each other.

$d\alpha$ probability ($\Gamma \uparrow (d\alpha)$)

Categorize BU states

- > $np\alpha$ -dominant state $|np\alpha\rangle\downarrow j$ $|BU\rangle\downarrow j$ with $\Gamma\downarrow j\uparrow(d\alpha) \leq 0.5$

The number of *np\alpha-dominant states* is much more than that of *d\alpha-dominant states*.

Decompose CDCC model space

 $P=P\downarrow 0 + P\uparrow *$

 $= P \downarrow 0 + P \downarrow d\alpha + P \downarrow n p \alpha$

 $\sum |d\alpha\rangle \downarrow ii \langle d\alpha | \sum |np\alpha\rangle \downarrow jj \langle np\alpha |$

Four-body channel-coupling effect

Three-body channel-coupling effect

Proposal of an effective 3-body model

Weak

We can describe ⁶Li scattering with three-body CDCC?

(Why traditional three-body CDCC does not work?)

Effective $d+\alpha+T$ three-body model

All we have to do is replace the *d*-T potential (U_d) .

- $\underbrace{U_d^{\mathsf{OP}}: \mathsf{Optical potential}}_{(includes d-BU effects)}$
- U^{SF}: Single-folding potential (NEVER includes d-BU effects) U¹d¹SF = (\$\phi^1\$d¹(gs) | U¹n + U¹p |\$\phi^1\$d¹(gs) }

We can get the reasonable cross section with U_d^{SF} .

SW, T. Matsumoto, K. Minomo, K. Ogata, and M. Yahiro, Phys. Rev. C 86, 031601(R) (2012).

Summary

We have studied four-body dynamics (n+p+α+T) of ⁶Li scattering in a wide energy range.

SW, T. Matsumoto, K. Ogata, and M. Yahiro, PRC 92, 044611 (2015).

- 4-body CDCC reproduces experimental data well.
- 3-body channel coupling is dominant.
 - ✓ *"Deuteron"* in ⁶Li hardly breaks up during scattering. $(=d\alpha \text{ dominance})$
- We have proposed an effective three-body model.
 - ✓ We can treat ⁶Li scattering easily and flexibly.

Backup

Convergence

Convergence 2

$d\alpha$ -probability for the g.s.

Discussion1: Coulomb breakup effects

Why is the Coulomb BU so small?

 $= Z \downarrow 1 \ A \downarrow 2 \ /A \downarrow 1 + A \downarrow 2 \ rY \downarrow 1 \mu (-\mathbf{r}) + Z \downarrow 2 \ A \downarrow 1 \ /A \downarrow 1 + A \downarrow 2 \ rY \downarrow 1 \mu (\mathbf{r})$

Dipole operator becomes 0 for ⁶Li ($d+\alpha$).

Why is the Coulomb BU so small?

• Three-cluster model

since

 $x \downarrow 1 Y \downarrow 1 \mu (\boldsymbol{x} \downarrow 1) = 2/3 rY \downarrow 1 \mu (\boldsymbol{r}) + 1/2 yY \downarrow 1 \mu (\boldsymbol{y}),$

 $x \downarrow 2 Y \downarrow 1 \mu (\boldsymbol{x} \downarrow 2) = 2/3 rY \downarrow 1 \mu (\boldsymbol{r}) - 1/2 yY \downarrow 1 \mu (\boldsymbol{y}),$

 $x\downarrow 3 Y\downarrow 1\mu (\boldsymbol{x} \downarrow 3) = -1/3 rY\downarrow 1\mu (\boldsymbol{r}).$

Energy spectrum of ⁶Li

Feshbach theory 1

Problem setting

Problem: Find the effective Hamiltonian H(P) for $P\Psi = |0\rangle\chi \downarrow 0$.

That is $H(P)P\Psi = EP\Psi \cdots (A)$

Once, we have Eq.(A), we can get

 $(K+U)\chi \downarrow 0 = E \downarrow 0 \ \chi \downarrow 0 \ , \qquad E \downarrow 0 = E - \varepsilon \downarrow 0$

 $U \equiv 0 V 0 = 0 V \bigcirc 0 + 0 PVQ(E^{\uparrow} + -QHQ)^{\uparrow} - 1 QVP0$

Folding potential Dynamical polarization potential

Feshbach theory 2

 $H\Psi = E\Psi, \qquad H = h + K + V$ P + Q = 1 $PHP\Psi + PHQ\Psi = EP\Psi \cdots (1)$ $QHP\Psi + QHQ\Psi = EQ\Psi \cdots (2)$

From Eq. (2), we have $Q\Psi = (E - QHQ)\uparrow -1 QHP\Psi \cdots (3)$

By substituting Eq. (3) into Eq. (1), we can get

 $(PHP+PHQ(E-QHQ)\uparrow-1 QHP)P\Psi=EP\Psi\cdots(4)$

 $\equiv H(P)$

 $(\Psi = |0)\chi \downarrow 0 + |1)\chi \downarrow 1 + \cdots)$

Feshbach theory 3

 $H\Psi = E\Psi, \qquad H = h + K + V$

 $(\Psi = |0\rangle\chi / 0 + |1\rangle\chi / 1 + \cdots)$

 $(PHP+PHQ(E-QHQ)\uparrow-1 QHP)P\Psi=EP\Psi\cdots(4)$

Since *P* is commutable with *h* and *K*,

 $PHP = P(h + K + V)P \cdots (5)$

 $PHQ=PVQ\cdots(6)$

 $QHP=QVP\cdots(7)$

are obtained. By substituting Eqs. (5)-(7) into Eq. (4), we have $F(h+K+V)P+(PVQ(E-QHQ))-1 QVP)P\Psi=EP\Psi\cdots(8)$

 $(K+PVP+PVQ(E-QHQ)\uparrow -1 QVP)P\Psi = E\downarrow 0 P\Psi \cdots (9)$

 $E \downarrow 0 = E - \varepsilon \downarrow 0$

Feshbach theory (Summary)

 $U \equiv 0 V 0 = 0 V \square 0 + 0 PVQ(E^{\uparrow} + -QHQ)^{\uparrow} - 1 QVP0$

Folding potential Dynamical polarization potential *U*: Generalized optical potential

d-breakup effects on d+²⁰⁹Bi scattering

✓ We can check *d*-breakup effects directly with 3-body CDCC.

Definition of U_d

 U_d^{OP} : *d*-optical potential (with *d*-breakup) U_d^{SF} : Single folding potential (without *d*-breakup)

experimental data A. Budzanowski *et al.*, Nuclear Physics **49**, 144 (1963).

d-breakup is significant for $d + {}^{209}$ Bi scattering

Direct comparison between U_d^{OP} and U_d^{SF}

Results for ⁶Li (Input for reaction calculations)

Energy spectrum obtained by GEM

 3^{+} 10 8 Energy [MeV b $n+p+\alpha$ () -2 g.s. -4

	π	ε ₀ [MeV]	R _{rms} [fm]
Calc.	1+	-3.69	2.43
Exp.	1+	-3.6989	2.44±0.07

Exp. A. V. Dobrovolsky et al., Nucl. Phys. A 766, 1 (2006).D. R. Tilley et al., Nucl. Phys. A 708, 3 (2002).

✓ Introduce the effective 3-body force (If $V \downarrow$ 3b =0, $\varepsilon \downarrow$ 0 =-2.94 MeV)

We have no adjustable parameter from now on.