Enhanced γ vibration and a long-lived K isomer in axially symmetric ¹⁷²Dy

Hiroshi Watanabe

EURIC

International Nuclear Physics Conference (INPC2016) September 11-16, 2016, Adelaide Convention Centre, Australia

Outline

1. Introduction

- Neutron-rich nuclei around double midshell
- Collective vibration
- High-K isomers
- 2. Experimental details
 - RIBF facility at RIKEN
 - EURICA decay spectroscopy setup
- 3. Results
 - ¹⁷²Dy
 - > Long-lived $K^{\pi} = 8^{-}$ isomer
 - > Ground-state and γ -vibrational bands
 - ¹⁶⁸Dy
- 4. Summary

Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

H. Watanabe ^{a,b,c,*}, G.X. Zhang ^{a,b}, K. Yoshida ^{d,e}, P.M. Walker ^f, J.J. Liu^g, J. Wu^{c,h}, P.H. Regan ^{f,i}, P.-A. Söderström^c, H. Kanaoka^j, Z. Korkulu^k, P.S. Lee¹, S. Nishimura^c, A. Yagi^j, D.S. Ahn^c, T. Alharbi^m, H. Baba^c, F. Browneⁿ, A.M. Bruceⁿ, R.J. Carroll^f, K.Y. Chae^o, Zs. Dombradi^k, P. Doornenbal^c, A. Estrade^p, N. Fukuda^c, C. Griffin^p, E. Ideguchi^q, N. Inabe^c, T. Isobe^c, S. Kanaya^j, I. Kojouharov^r, F.G. Kondev^s, T. Kubo^c, S. Kubono^c, N. Kurz^r, I. Kuti^k, S. Lalkovski^f, G.J. Lane^t, C.S. Lee¹, E.J. Lee^o, G. Lorusso^{c,f,i}, G. Lotay^f, C.-B. Moon^u, I. Nishizuka^v, C.R. Nita^{n,w}, A. Odahara^j, Z. Patel^f, V.H. Phong^{c,x}, Zs. Podolyák^f, O.J. Roberts^y, H. Sakurai^c, H. Schaffner^r, C.M. Shand^f, Y. Shimizu^c, T. Sumikama^v, H. Suzuki^c, H. Takeda^c, S. Terashima^{a,b}, Zs. Vajta^k, J.J. Valiente-Dóbon^z, Z.Y. Xu^g

EURICA experimental campaign at RIBF in November, 2014

CrossMark

Middle of the major shells between ¹³²Sn and ²⁰⁸Pb

Maximum ground-state deformation?

Nuclear Physics

- Where does the largest deformation occur?
- How the neutron excess affect shapes, pairing?
- Sub-shell closures stabilize the shape?

Nuclear Astrophysics

 Formation of the rare-earth element peak in the r-process

Intrinsic excitations in deformed nuclei : Collective vibrations

Single-particle orbitals near the Fermi surface

Intrinsic excitations

 $\square K^{\pi} = 2^{+} \Rightarrow \gamma \text{ vibration } (\Delta N = 0 \text{ or } \pm 2, \Delta n_{z} = 0, \Delta \Lambda = \Delta K = \pm 2)$

- Instantaneous breaking of axial symmetry
- > Soft mode of γ instability or rigid triaxial deformation
- K^π = 0⁺ ⇒ β vibration, pairing excitation, intruder states, shape coexistence

 Axial symmetry preserved

 $\square K^{\pi} = 0^{-}, 1^{-}, 2^{-}, 3^{-} \Rightarrow \text{Octupole vibration} (\Delta j = \Delta l = 3)$

Intrinsic excitations in deformed nuclei : Collective vibrations

Single-particle orbitals near the Fermi surface

Intrinsic excitations

 $\square K^{\pi} = 2^{+} \Rightarrow \gamma \text{ vibration } (\Delta N = 0 \text{ or } \pm 2, \Delta n_{z} = 0, \Delta \Lambda = \Delta K = \pm 2)$

- Instantaneous breaking of axial symmetry
- > Soft mode of γ instability or rigid triaxial deformation

 K^π = 0⁺ ⇒ β vibration, pairing excitation, intruder states, shape coexistence

 Axial symmetry preserved

C $K^{\pi} = 0^{-}, 1^{-}, 2^{-}, 3^{-} \Rightarrow$ Octupole vibration ($\Delta j = \Delta l = 3$)

Good testing ground for collective model calculations

Intrinsic excitations in deformed nuclei : K isomer

$$\lambda I_i, K_i, \tau_{\gamma}$$

$$\lambda I_f, K_f$$

$$\begin{split} K = \sum_{j} \Omega_{j} & \lambda \geq \left| I_{i} - I_{f} \right| & \text{Spin selection ... Yes} \\ \lambda \geq \left| K_{i} - K_{f} \right| & \text{K-selection ... Sort of !} \end{split}$$

K hindered
transitionsWeisskopf hindrance $F = \tau_{\gamma}^{exp} / \tau_{W}$ Reduced hindrance $f_{\nu} = F^{1/\nu}$ The degree of K forbiddenness $\nu = \Delta K - \lambda$

The identification and characterization of K-isomers provides information on

✓ Single-particle orbits near the Fermi surface
 ✓ Pairing and other residual interactions
 ✓ Axial (a)symmetry (γ degree of freedom)

Radioactive Isotope-Beam Factory (RIBF) at RIKEN

Radioactive Isotope-Beam Factory (RIBF) at RIKEN

WAS3ABi: Wide-range Active Silicon-Strip Stopper Array for Beta and ion detection

DAQ for decay spectroscopy experiment

Nov. 2014 (3 days)

- High intensity (10~15 pnA)
 Slits optimized for ^{170,172}Dy
 ΔA/Q ~ 0.05 %
 - ⇒ Separate charge state

 Ion
 BIGRIPS

 170Dy66+
 12932

 172Dy66+
 8272

Heaviest isotope spectroscopic study done so far at RIBF

★ Isomer in µs☆ Isomer in ms

H. Watanabe et al., PLB 760 (2016) 641

1 keV

Counts /

Counts / 1 keV

No level information before

- In the provide the second second
 - Coincidence with internalconversion (IC) electrons
 - Decay from a long-lived isomer
 - Observation of the Dy K_α-X ray at 45.8 keV
 - > 76-keV γ ray disappears for E_e ≤ 80 keV
- Level scheme constructed based on γ-γ coincidence, energy matching, feeding patterns, and systematics
 - K^π = 8⁻ isomer (T_{1/2} = 0.75 s) at 1278 keV
 - Ground-state (g.s.) rotational band
 - γ-vibrational band
 - ✓ Band assignment supported by the moment of inertia and g.s.-γ band mixing

H. Watanabe et al., PLB 760 (2016) 641

1 keV

Counts /

Counts / 1 keV

No level information before

- In the provide the second second
 - Coincidence with internalconversion (IC) electrons
 - Decay from a long-lived isomer
 - Observation of the Dy K_α-X ray at 45.8 keV
 - > 76-keV γ ray disappears for E_e ≤ 80 keV
- Level scheme constructed based on γ-γ coincidence, energy matching, feeding patterns, and systematics
 - K^π = 8⁻ isomer (T_{1/2} = 0.75 s) at 1278 keV
 - Ground-state (g.s.) rotational band
 - γ-vibrational band
 - ✓ Band assignment supported by the moment of inertia and g.s.-γ band mixing

⇒ β-decaying state with 5⁺, 6⁺, or 7⁺
 ※ The g.s. of ¹⁷²Tb expected to have J^π = 6⁺; π3/2⁺[411]⊗v9/2⁺[624]
 ※ Anti-parallel coupling results in J^π = 3⁺
 > γ rays at 668 and 592keV, the former in agreement with the extrapolated energy of the 2⁺_v state (671 keV)

Systematics of the ground-state rotational band of Dy isotopes

Maximum deformation of the Dy isotopes occurs in 170 Dy (N = 104)?

 $K^{\pi} = 8^{-}$ isomers and γ -vibrational states in N = 106 isotones

- \square K^{π} = 8⁻ isomers in N = 106 isotones
 - > Neutron two-quasiparticle configuration: v7/2-[514]v9/2+[624]
 - The energy systematics interpreted in terms of the variation of the neutron pairing strength
 - > The isomerism ascribed to the large difference in the K quantum number
 - E1 transition from the K^{π} = 8⁻ isomer to the 8⁺ state in the g.s. band
 - \succ f_v follows the upward trend
 - ⇒ K is rather robust, as expected for axially symmetric nuclei

 $K^{\pi} = 8^{-}$ isomers and γ -vibrational states in N = 106 isotones

Δ $K^{\pi} = 2^+ \gamma$ -vibrational levels in ¹⁷²Dy

 \times Unusually low excitation energy, compared to the heavier isotones (¹⁷⁶Yb, ¹⁷⁸Hf)

- Extrapolated energy of the 2_{v}^{+} state (671 keV)
 - > As low as the 2_{γ}^{+} state in the γ -unstable nucleus ¹⁸⁴Pt
 - > Sufficiently higher than the 4_1^+ state \Rightarrow Axially-symmetric structure

γ-vibrational motion is remarkably enhanced

Microscopic effect on the non-axial collectivity is significant

Interpretation of γ vibration in the framework of Nuclear DFT

Skyrme + pairing energy-density functional (EDF)

- HFB for the ground state
- QRPA for the intrinsic excitations

K. Yoshida and H. Watanabe arXiv:1607.07111

- $\Delta N = 0 \text{ or } \pm 2$,
- $\Delta n_z = 0$,
- $\Delta \Lambda = \Delta K = \pm 2$

Interpretation of γ vibration in the framework of Nuclear DFT

♦ HFB+QRPA calculation well reproduces the experimental results
 Decreasing trend of the 2⁺_γ energies from ¹⁷⁰Dy₁₀₄ to ¹⁷²Dy₁₀₆
 [Significant 2qp components in QRPA]
 Proton ⇒ Not change so much with the neutron number
 π²1/2⁺[411]⊗3/2⁺[411] (~0.25), π²1/2⁺[411]⊗5/2⁺[413] (~0.19)
 Neutron ⇒ Isotopic dependence of the 2⁺_γ energies
 3 components play dominant roles beyond midshell (N > 104)

Even lower energy predicted for ¹⁷⁴Dy₁₀₈ to be investigated in future experiments using more intense RI beams

Prediction of octupole-vibrational states in Dy isotopes

Summary

Neutron-rich Dy isotopes have been explored at RIBF as part of the EURICA decay spectroscopy campaign.

 172 Dy (N = 106)

- The most neutron-rich Dy isotope studied to date
- So far, the heaviest isotope any spectroscopic information obtained at RIBF
- K^{π} = 8⁻ isomer (E_x = 1278 keV, T_{1/2} = 0.71 s)
- Ground-state rotational band

 \Rightarrow Axial symmetry

■ $K^{\pi} = 2^+$ states at low excitation energy ⇒ Enhanced γ vibration

3 neutron 2qp components significant beyond double midshell

168 Dy (N = 102)

• Analysis is still ongoing

Thank you for your attention!

backup

Systematics of γ-vibrational band in well-deformed rare-earth nuclei around double mid-shell

Systematics of γ-vibrational band in well-deformed rare-earth nuclei around double mid-shell

Long-lived isomer (T _{1/2} = 0.71 s)	Transition	Ι (γ/β)	σλ	Β(σλ) [W.u.]	v	$\mathbf{f}_{\mathbf{v}}$
K-hindered internal transitions compete with allowed-unhindered β decay	400.4 keV	100(41)	E1	1.1(6)×10 ⁻¹⁵	7	137(26)
	758 keV	17(12)	M2	2.3(18)×10 ⁻¹⁰	6	40(13)
	45 keV	144(52)	E1	1.1(5)×10 ⁻¹²	5	245(50)
	β	94(70)	-	-	-	-

β-decay of deformed nuclei in the rare-earth region

Allowed β⁻ decay : Gamow-Teller (GT) transition

