Dipole Polarizability of ⁴⁸Ca and Implications for the Neutron Skin

DARMSTADT

Peter von Neumann-Cosel Institut für Kernphysik, Technische Universität Darmstadt

Collaboration

Experiment: S. Bassauer (TUD), J. Birkhan (Darmstadt), H. Matsubara (RCNP), P. von Neumann-Cosel (TUD), N. Pietralla (TUD), A. Richter (TUD), A. Tamii (RCNP)

Theory: S. Bacca (TRIUMF), G. Hagen (ORNL), M. Miorelli (TRIUMF), T. Papenbrock (U Tennessee), A. Schwenk (TUD)

Supported by DFG under contract SFB 1245

Static nuclear dipole polarizability

 α_D is measure of neutron skin

P.G. Reinhard and W. Nazarewicz. Phys. Rev. C 81 (2010) 051303(R)

Polarizability and Neutron Skin

1.0

effective mass m*/m

dipole polarizability (fm²/MeV)

(b)

(a)

Polarizability, Neutron Skin and Symmetry Energy

S. Typel and B. A. Brown, Phys. Rev. C 64, 027302 (2001)

Neutron skin correlated with density dependence of symmetry energy

■ Relevance of polarizability data → plenary talk of Atsushi Tamii tomorrow

Peter von Neumann-Cosel | INPC, Adelaide, Australia | September 12, 2016

The Case of ⁴⁸Ca

 New predictions from EDFs based on presently available polarizability data

X. Roca-Maza et al., Phys.Rev. C 92, 064304 (2015)

- Recent coupled-cluster results based on interactions derived from χEFT
 G. Hagen et al., Nature Physics 12, 186 (2016)
- CREX Experiment proposed at JLAB to measure weak (i.e., neutron) form factor with parity-violating elastic electron scattering

Experimental Approach

- 300 MeV proton scattering at and close to 0°
 - strong Coulomb excitation of 1⁻ states: E1 strength up to 25 MeV
 - high resolution: $\Delta E = 25 30 \text{ keV}$ (FWHM)
 - angular distributions: E1 / M1 separation by MDA
 - polarization observables: spinflip / non-spinflip separation
 - ²⁰⁸Pb and ¹²⁰Sn as reference cases

A. Tamii et al., Phys. Rev. Lett. 107 (2011) 062502
I. Poltoratska et al., Phys. Rev. C 85 (2012) 041304(R)
A.M. Krumbholz et al., Phys. Lett. B 744 (2015) 7
T. Hashimoto et al., Phys. Rev. C 92 (2015) 031305(R)
J. Birkhan et al., Phys. Rev. C 93 (2016) 041302(R)

⁴⁸Ca(p,p') Data from RCNP

Multipole Decomposition Analysis

- DWBA analysis:
 - Code: DWBA07
 - Effective proton-nucleus interaction (Love & Franey)
 - QPM wave functions
- Multipole decomposition

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega}_{\mathrm{DATA}} = \sum_{J^{\pi}} a_{J^{\pi}} \cdot \frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega}_{J^{\pi},\mathrm{DWBA}}$$

- Variants for ⁴⁸Ca compared to MDA in heavy nuclei
 - M1 neglected
 - E2 (ISGQR) an E0 (ISGMR) subtracted from spectra prior to MDA
 - Angular distribution of nuclear background assumed to be constant

Multipole Decomposition Analysis

- DWBA analysis:
 - Code: DWBA07
 - Effective proton-nucleus interaction (Love & Franey)
 - QPM wave functions
- Multipole decomposition

$$\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega}_{\mathrm{DATA}} = \sum_{J^{\pi}} a_{J^{\pi}} \cdot \frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\Omega}_{J^{\pi},\mathrm{DWBA}}$$

- Variants for ⁴⁸Ca compared to MDA in heavy nuclei
 - M1 neglected
 - E2 (ISGQR) an E0 (ISGMR) subtracted from spectra prior to MDA
 - Angular distribution of nuclear background assumed to be constant

MDA Results

- E2 and E0 cross sections very small
- Resulting background has similar shape as observed in heavy nuclei

• Cross sections are comparable but there is an energy shift of (1.0 ± 0.3) MeV

• ⁴⁸Ca (GDR): $\alpha_{D} = (1.73 \pm 0.18) \text{ fm}^{3}$

⁴⁰Ca (GDR): $\alpha_D = (1.50 \pm 0.02) \text{ fm}^3$

Photoabsorption Cross Sections

• $\alpha_{\rm D}(10 - 60 \text{ MeV}) = (2.07 \pm 0.22) \text{ fm}^3$

Uncertainty dominated by parametrization of nuclear background in MDA

New Ab-Initio Calculations

- Strength distribution from Lorentz-integral method
- 2 MeV discrepancy due to truncation of Hilbert space
- Effects are currently investigated by Marco Miorelli

Present Status of Experiment and Theory for the Dipole Polarizability of ⁴⁸Ca

χEFT: G. Hagen et al., Nature Physics 12, 681 (2016) EDFs: X. Roca-Maza et al., Phys .Rev. C 92, 064304 (2015)

- Neutron skin predicted from χEFT: 0.15 fm
- Neutron skin predicted from EDFs: 0.15 0.20 fm, no correlation with α_D

this needs to be understood!

Thank you for your attention!

Peter von Neumann-Cosel | INPC, Adelaide, Australia | September 12, 2016

M1 Cross sections

J. Birkhan et al., Phys. Rev. C 93, 041302(R) (2016)

E2 cross sections

From MDA of ${}^{48}Ca(\alpha, \alpha')$ data

→ input to DWBA calculation of corresponding (p,p') cross sections

Y.-W. Lui et al., Phys. Rev. C 83, 044327 (2011)

- Statistical and systematic errors of cross sections
- MDA uncertainties: variance of χ 2-weighted averaging over all possible combinations
- All contributions taken into account in MC simulation
- Uncertainty dominated by **MDA** errors

 $\theta_{CM}(\circ)$

B(E1) Strength in ⁴⁸Ca

G.J. O'Keefe et al. Nucl. Phys. A 469, 239 (1987 S. Strauch et al., Phys. Rev. Lett. 85, 2913 (2000)

O'Keefe et al: result discarded because of method
Strauch et al: (e,e'p) channel missing

Polarizability Contribution from E1 Strength Below Threshold

Photoabsorption Cross Section in ⁴⁰Ca up to 160 MeV

Note: above E_x = 60 MeV cross section is negligibly small

Data in GDR region differ from original paper (see EXFOR data base)

technische

DARMSTADT

Constraints on Symmetry Energy Parameter

Nuclear Background

At E_x = 24 – 25 MeV cross sections approximately constant

⁴⁸Ca Polarizability from EDF predictions

X. Roca-Maza et al., Phys .Rev. C 92, 064304 (2015)

 Prediction of α_D(⁴⁸Ca) based on EDFs which simultaneously describe the polarizability of ⁶⁸Ni, ¹²⁰Sn and ²⁰⁸Pb

⁴⁸Ca Polarizability from xEFT Predictions

G. Hagen et al., Nature Physics 12, 186 (2016)

• Correlation of $\alpha_D(^{48}Ca)$ with proton and neutron radius

Polarizability and Symmetry Energy Parameters

X. Roca-Maza et al., Phys.Rev. C 88, 024316 (2013)

