Test of the Brink-Axel Hypothesis with Gamma Strength Functions from Forward Angle Inelastic Proton Scattering

Peter von Neumann-Cosel
Institut für Kernphysik, Technische Universität Darmstadt

- Gamma strength functions and Brink-Axel hypothesis
- The case of 208Pb
- The case of 96Mo
- Level densities from fine structure

Supported by DFG under contract SFB 1245
Gamma Strength Function (GSF)

\[
\langle \Gamma (E_i) \rangle = \frac{1}{\rho(E_i)} \int_0^{E_i} E_\gamma^3 \ f^{E/M\lambda}(E_\gamma) \ \rho(E_f) \ dE_\gamma
\]

- GSF describes average \(\gamma \) decay probability
- Depends on level densities at initial and final energies
- Sum over all multipolarities but E1 dominates
- Applications in astrophysics (large-scale reaction network calculations), reactor modeling and waste transmutation
Brink-Axel Hypothesis

- **Strength**
 - depends only on E_γ
 - is independent of the initial and final state structure: E_x, J^π, \ldots

- Central assumption for modeling finite temperature effects in astrophysical reaction network calculations

- Same GSF for γ absorption and emission \rightarrow needs to be tested
Electric Dipole Response in Nuclei

- BA hypothesis approximately holds in GDR region for temperatures < 1.5 MeV
- What about the PDR region?

Oscillations of neutron skin against N ≈ Z core
Pygmy Dipole Resonance (PDR)

Oscillations of neutrons against protons
Giant Dipole Resonance (GDR)
Influence of the PDR on r-Process Rates

New Experimental Tool for Complete Dipole Strength Distributions

- Polarized proton scattering at 300 MeV and 0° at RCNP
 - relativistic Coulomb excitation dominates: E1 strength
 - Spinflip-M1 cross sections separated: M1 strength
 - high resolution ΔE ≈ 25 keV (FWHM): level density of 1^- states

- ^{208}Pb and ^{120}Sn as reference cases
208Pb Spectrum

$\Delta E = 25$ keV (FWHM)

PDR + Spin-M1

GDR

208Pb(p,p')

$E_p = 295$ MeV

$\Theta = 0^\circ - 2.5^\circ$
GSF in 208Pb: Comparison with Oslo Data

* (p,p')*: S. Bassauer, PvNC, A. Tamii, Phys. Rev. C (submitted)

* (3He,3He'γ)*: N.U.H. Syed et al., Phys. Rev. C 79, 024316 (2009); reanalyzed by M. Guttormsen (priv. comm.)

- Violation of BA hypothesis in the PDR region?
- Problem of decomposition of GSF and level densities in Oslo method?
Level density of $J^{\pi} = 1^-$ states in 208Pb

Total Level Density in ^{208}Pb

- Good agreement with Oslo results
GSF in 96Mo

(p,p'): D. Martin et al., to be published

- Consistent with decay results in the PDR region
Total Level Density in 96Mo

- Consistent with results from decay experiments
J = 1 Level Densities in Heavy Deformed 154Sm

Level densities

154Sm(p,p')

Preliminary

Level density [MeV$^{-1}$]

4 5 6 7 8 9 10 11 12
Excitation Energy [MeV]

BSFG (Rauscher)
vonEgidy
HFB
Data
Summary

- Polarized proton scattering at 300 MeV and 0°: a new experimental tool
- Extraction of GSF (E1 and M1) and level densities from the same data
- Level densities in 96Mo and 208Pb agree with those from Oslo data
- Disagreement of GSF with Oslo data in the PDR region for 208Pb: large intensity fluctuations because of too small level density?
- Brink-Axel hypothesis seems to hold in the PDR region for 96Mo
Collaboration

Department of Physics, Texas A&M University, Commerce, USA
Institut für Kernphysik, TU Darmstadt, Germany
Institut für Theoretische Physik, Universität Erlangen, Germany
School of Physics, University of the Witwatersrand, Johannesburg, South Africa
Institute for Nuclear Science and Technology Hanoi, Vietnam
Physics Department, Istanbul University, Turkey
Department of Physics, Kyoto University, Japan
Department of Physics, Osaka University, Japan
RCNP, Osaka University, Japan
Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan
iThemba LABS, Somerset West, South Africa
CNS, University of Tokyo, Japan
RIKEN Nishina Center, Tokio, Japan
IFIC-CSIC, Valencia, Spain

Special thanks to S. Bassauer, D. Martin, I. Poltoratska, A. Tamii
Fluctuation Analysis

- Background from MDA
- Stationary spectrum $\frac{g(E_x)}{g_{\geq}(E_x)}$
- Autocorrelation function $C(\varepsilon) - 1$
Autocorrelation Function and Mean Level Spacing

- $C(\varepsilon) = \frac{\langle d(E_x) \cdot d(E_x + \varepsilon) \rangle}{\langle d(E_x) \rangle \cdot \langle d(E_x + \varepsilon) \rangle}$
 - autocorrelation function

- $C(\varepsilon = 0) - 1 = \frac{\langle d^2(E_x) \rangle - \langle d(E_x) \rangle^2}{\langle d(E_x) \rangle^2}$
 - variance

- $C(\varepsilon = 0) - 1 = \frac{\alpha \langle D \rangle}{2\sigma \sqrt{\pi}}$
 - level spacing $\langle D \rangle$

- $\alpha = \alpha_{PT} + \alpha_W$
 - statistical properties

- σ
 - resolution
M1 Strength in 208Pb

R. Köhler et al., PRC 35, 1646 (1987)

$$\sum B(M1) = 14.8^{+1.5}_{-1.9} \mu_N^2$$
for $E_x \leq 8$ MeV

$$\sum B(M1) = 16.0(1.2) \mu_N^2$$
for $E_x \leq 8$ MeV

$$\sum B(M1) = 20.5(1.3) \mu_N^2$$
for full resonance
Level Density Spin Distribution in 208Pb

- Average over different models

$E_x = 8$ MeV

- BSFGM (RIPL-3)
- BSFGM (Rauscher et al.)
- BSFGM (von Egidy et al.)

Spin Distribution Function $f(J)$ vs Spin J
GSF in ^{208}Pb: Contributions

![Graph showing the Total GSF (MeV$^{-3}$) vs Energy (MeV) with different contributions labeled as E1-GSF (exp.), M1-GSF (exp.), and E2-GSF (exp.) $\times E_x^2$.](image-url)
Gamma Strength Function (GSF)

\[
\langle \Gamma(E_i) \rangle = \frac{1}{\rho(E_i)} \cdot \int_0^{E_i} E_\gamma^3 f^{E_1}(E_\gamma) \rho(E_i - E_\gamma) \, dE_\gamma
\]

\[
\langle \Gamma_{i \rightarrow g.s.} \rangle = \frac{f^{E_1}(E_\gamma) \cdot E_\gamma^3}{\rho(E_i)}
\]

\[
f^{E_1}(E_\gamma) = \frac{\sigma_{abs}(E_i)}{3(\pi \hbar c)^2 \cdot E_\gamma}
\]
Multipole Decomposition of Angular Distributions

$^{208}\text{Pb}(p,p')$
$E_p = 295 \text{ MeV}$
$\Theta = 0^\circ - 2.5^\circ$

$d^2\sigma / d\Omega dE$ (mb/ sr MeV)

Excitation Energy (MeV)

$\Delta E_x = 7.26 - 7.37 \text{ MeV}$
$\Delta E_x = 7.37 - 7.41 \text{ MeV}$
$\Delta E_x = 13.2 - 13.4 \text{ MeV}$

Θ_{lab} (deg)
E1/M1 Decomposition by Spin Observables

Polarization observables at 0° spinflip / non-spinflip separation (model-independent)

\[\Delta S = D_{SS} + D_{NN} + D_{LL} = \begin{cases} -1 & \text{for } \Delta S = 1 \to 1^+ \\ 3 & \text{for } \Delta S = 0 \to 1^- \end{cases} \]

At 0° \(D_{SS} = D_{NN} \) Total Spin Transfer \(\Sigma \equiv \frac{3 - (2D_{SS} + D_{LL})}{4} = \begin{cases} 1 & \text{for } \Delta S = 1 \\ 0 & \text{for } \Delta S = 0 \end{cases} \)

Decomposition into Spinflip / Non-Spinflip Cross Sections

\[\frac{d^2\sigma}{d\Omega dE} \text{ (mb/ sr MeV)} \]

\[^{208}\text{Pb}(\vec{p},\vec{p}') \]

\[E_p = 295 \text{ MeV} \]

\[\Theta = 0^\circ - 2.5^\circ \]

Excitation Energy (MeV)
Comparison of Methods

\[^{208}\text{Pb}(\bar{p},\bar{p}') \]
\[E_p = 295 \text{ MeV} \]
\[\Theta = 0^\circ \text{ - } 2.5^\circ \]

Total

\[\Delta S = 1 \]

\[\Delta S = 0 \]
B(E1) Strength in 208Pb

208Pb(γ,γ') + 207Pb(n,γ)

$E_p = 295$MeV
$\Theta = 0^\circ$ - 0.94°

$B(E1)$ (10$^{-3}$ e^2fm2)

Excitation Energy (MeV)

σ_{tot} (mb)

Excitation Energy (MeV)
Differential Cross Sections

$^{96}\text{Mo}(p,p')$

$E_p = 295 \text{ MeV}$

full acceptance

$\frac{d^2\sigma}{d\Omega\, dE} \text{ (mb/sr MeV)}$

Excitation Energy (MeV)

0°

3°

4.5°
E1/M1 Decomposition

\[^{120}\text{Sn}(p,p') \]
\[E_p = 295 \text{ MeV} \]
\[\theta = 0^\circ - 2.5^\circ \]

\[\Delta S = 1 \]

\[\Delta S = 0 \]

Excitation Energy (MeV)
Polarization Transfer Observables in 96Mo

96Mo(p,p')
$E_p = 295$ MeV
$\theta_{GR} = 0^\circ$
full acceptance

Σ

$\frac{d^2\sigma}{d\Omega \, dE}$ (mb/sr MeV)

Excitation Energy (MeV)
Comparison: PTA vs. MDA

\[^{96}\text{Mo}(p,p') \]
\[E_p = 295 \text{ MeV} \]
\[\theta = 0^\circ - 2.6^\circ \]

![Graph a](image1)

![Graph b](image2)

\[\Delta S = 1 \]

\[\Delta S = 0 \]

Excitation Energy (MeV)

$d^2\sigma/d\Omega dE$ (mb/sr MeV)
0° Setup at RCNP

Measured observables:
- \(\frac{d\sigma}{d\Omega} \) - angular distributions (0° ≤ Θ ≤ 10°)
- \(A_y \) - asymmetry
- \(D_{SS} \) at 0° - sideways polarization
- \(D_{LL} \) at 0° - longitudinal polarization

A. Tamii et al., NIMA 605 (2009) 326