Test of the Brink-Axel Hypothesis with Gamma Strength Functions from Forward Angle Inelastic Proton Scattering

TECHNISCHE UNIVERSITÄT DARMSTADT

Peter von Neumann-Cosel Institut für Kernphysik, Technische Universität Darmstadt

- Gamma strength functions and Brink-Axel hypothesis
- The case of ²⁰⁸Pb
- The case of ⁹⁶Mo
- Level densities from fine structure

Supported by DFG under contract SFB 1245

$$\langle \Gamma(E_i) \rangle = \frac{1}{\rho(E_i)} \int_0^{E_i} E_{\gamma}^3 f^{E/M\lambda}(E_{\gamma}) \rho(E_f) dE_{\gamma}$$

- GSF describes average γ decay probability
- Depends on level densities at initial and final energies
- Sum over all multipolarities but E1 dominates
- Applications in astrophysics (large-scale reaction network calculations), reactor modeling and waste transmutation

Brink-Axel Hypothesis

Strength

- depends only on E_{γ}
- is independent of the initial and final state structure: E_x , J^{π} ,...
- Central assumption for modeling finite temperature effects in astrophysical reaction network calculations
- Same GSF for γ absorption and emission \rightarrow needs to be tested

Electric Dipole Response in Nuclei

BA hypothesis approximately holds in GDR region for temperatures < 1.5 MeV</p>

• What about the PDR region?

Influence of the PDR on r-Process Rates

 10^{2} 10¹ 10¹ $^{^{115}}Sn(n,\gamma)^{^{116}}Sn$ 119 Sn(n, γ) 120 Sn 10⁰ 10⁰ σ [b] σ [b] 10⁻¹ 10⁻¹ Exp (ENDF/B-VII.0) 10⁻² RQTBA (microscopic) Thielemann & Arnould (1983) 10⁻³+ 10 (IPL-2 (theor) 10^{-2} 10⁵ 10⁶ 10^{-3} 10⁴ 107 10⁵ 10⁶ 10⁴ 10 E_n [eV] E_n [eV] 10[°] 10[°] 131 Sn(n, γ) 132 Sn ¹²⁹Sn(n,γ)¹³⁰Sn 10⁻¹ 10⁻¹ 10⁻² 10⁻² : σ [b] σ [b] 10⁻³ 10⁻³ 10⁻⁴ 10⁻⁵ 10-4 10⁴ 10⁵ 10⁶ 10^{3} 10⁴ 10⁶ 10 10^{3} 10⁵ 10 E [eV] E_n [eV]

E. Litvinova et al., Nucl. Phys. A 823, 26 (2009)

New Experimental Tool for Complete Dipole Strength Distributions

- Polarized proton scattering at 300 MeV and 0° at RCNP
 - relativistic Coulomb excitation dominates: E1 strength
 - Spinflip-M1 cross sections separated: M1 strength
 - high resolution $\Delta E \approx 25 \text{ keV}$ (FWHM): level density of 1⁻ states

²⁰⁸Pb and ¹²⁰Sn as reference cases

 A. Tamii et al., Phys. Rev. Lett. 107 (2011) 062502
 I. Poltoratska et al., Phys. Rev. C 85 (2012) 041304(R)
 A.M. Krumbholz et al., Phys. Lett. B 744 (2015) 7
 T. Hashimoto et al., Phys. Rev. C 92 (2015) 031305(R)
 J. Birkhan et al., Phys. Rev. C 93 (2016) 041302(R)

²⁰⁸Pb Spectrum

GSF in ²⁰⁸Pb: Comparison with Oslo Data

(p,p'): S. Bassauer, PvNC, A. Tamii, Phys. Rev. C (submitted) (³He,³He'γ): N.U.H. Syed et al., Phys. Rev. C 79, 024316 (2009); reanalyzed by M. Guttormsen (priv. comm.)

Violation of BA hypothesis in the PDR region?

Problem of decomposition of GSF and level densities in Oslo method?

Level density of $J^{\pi} = 1^{-1}$ states in ²⁰⁸Pb

I. Poltoratska et al., Phys. Rev. C 89, 054322 (2014)

Total Level Density in ²⁰⁸Pb

GSF in ⁹⁶Mo

(p,p'): D. Martin et al., to be published (³He,³He'): A.C. Larsen, S. Goriely, Phys. Rev. C 82 (2010) 014318

Consistent with decay results in the PDR region

Consistent with results from decay experiments

TECHNISCHE

J = 1 Level Densities in Heavy Deformed ¹⁵⁴Sm

TECHNISCHE UNIVERSITÄT DARMSTADT

- Polarized proton scattering at 300 MeV and 0°: a new experimental tool
- Extraction of GSF (E1 and M1) and level densities from the same data
- Level densities in ⁹⁶Mo and ²⁰⁸Pb agree with those from Oslo data
- Disagreement of GSF with Oslo data in the PDR region for ²⁰⁸Pb: large intensity fluctuations because of too small level density?
- Brink-Axel hypothesis seems to hold in the PDR region for ⁹⁶Mo

Collaboration

Department of Physics, Texas A&M University, Commerce, USA Institut für Kernphysik, TU Darmstadt, Germany Institut für Theoretische Physik, Universität Erlangen, Germany School of Physics, University of the Witwatersrand, Johannesburg, South Africa Institute for Nuclear Science and Technology Hanoi, Vietnam Physics Department, Istanbul University, Turkey Department of Physics, Kyoto University, Japan Department of Physics, Osaka University, Japan RCNP, Osaka University, Japan Cyclotron and Radioisotope Center, Tohoku University, Sendai, Japan iThemba LABS, Somerset West, South Africa CNS, University of Tokyo, Japan RIKEN Nishina Center, Tokio, Japan IFIC-CSIC, Valencia, Spain

Special thanks to S. Bassauer, D. Martin, I. Poltoratska, A. Tamii

Fluctuation Analysis

• $C(\varepsilon = 0) - 1 = \frac{\langle d^2(E_x) \rangle - \langle d(E_x) \rangle^2}{\langle d(E_x) \rangle^2}$

• $C(\varepsilon) = \frac{\langle d(E_x) \cdot d(E_x + \varepsilon) \rangle}{\langle d(E_x) \rangle \cdot \langle d(E_x + \varepsilon) \rangle}$

•
$$C(\varepsilon = 0) - 1 = \frac{\alpha \langle D \rangle}{2\sigma \sqrt{\pi}}$$

•
$$\alpha = \alpha_{PT} + \alpha_{W}$$

 σ

autocorrelation function

variance

level spacing $\langle D \rangle$

statistical properties

resolution

Autocorrelation Function and Mean Level Spacing

M1 Strength in ²⁰⁸Pb

R.M. Laszewsi et al., Phys. Rev. Lett. 61, 1710 (1988) R. Köhler et al., PRC 35, 1646 (1987)

$$\sum B(M1) = 14.8^{+1.5}_{-1.9} \mu_N^2$$

for E_x ≤ 8 MeV

J. Birkhan et al., Phys. Rev. C 93, 041302(R) (2016)

$$\sum_{\text{for } E_x \le 8 \text{ MeV}} B(M1) = 16.0(1.2) \mu_N^2$$

$$\sum B(M1) = 20.5(1.3)\,\mu_N^2$$

for full resonance

Level Density Spin Distribution in ²⁰⁸Pb

Average over different models

GSF in ²⁰⁸Pb: Contributions

Gamma Strength Function (GSF)

$$\langle \Gamma(E_i) \rangle = \frac{1}{\rho(E_i)} \cdot \int_0^{E_i} E_{\gamma}^3 f^{E_1}(E_{\gamma}) \rho(E_i - E_{\gamma}) dE_{\gamma}$$

Multipole Decomposition of Angular Distributions

Peter von Neumann-Cosel | INPC, Adelaide, Australia | September 16, 2016

T. Suzuki, Prog. Theo. Phys. 103, 859 (2000)

Decomposition into Spinflip / Non-Spinflip Cross Sections

TECHNISCHE UNIVERSITÄT

DARMSTADT

B(E1) Strength in ²⁰⁸Pb

Differential Cross Sections

E1/M1 Decomposition

Polarization Transfer Observables in ⁹⁶Mo

TECHNISCHE

UNIVERSITÄT DARMSTADT

Peter von Neumann-Cosel | INPC, Adelaide, Australia | September 16, 2016

Comparison: PTA vs. MDA

TECHNISCHE UNIVERSITÄT DARMSTADT

0° Setup at RCNP

