

K. Blaum,- Phys. Scr. T152 (2013) 014017

Outline

- The Heavy Element Laser Ionization Spectroscopy (HELIOS) project:
 - nuclear and atomic physics motivation
- Laser ionization spectroscopy of ²¹²⁻²¹⁵Ac at the Leuven Isotope Separator On Line (LISOL) facility
 - in gas-cell and in-gas jet
- Off-line characterization studies
- Conclusion and Outlook

KU LEUV

Reported Magnetic Moments

KU LEUVEN

Laser Ionization Spectroscopy: basics

KU LEUVEN

courtesy I. Moore

Laser Ionization Spectroscopy @ LISOL: in-gas cell

Limitations:

- Pressure shift and broadening
- Doppler broadening
- Ion-gas interactions

 ⁵⁷Cu(Z=29, N=28, T_{1/2}=196 ms) Cocolios,- PRL 103 (2009) 102501
⁹⁷Ag (Z=47, N=50, T_{1/2}= 26 s)) Ferrer,- PLB 728 (2014) 191

HFS of ²¹²⁻²¹⁵Ac - 439 nm transition N=126

LAR SSA

Wavenumbers (cm⁻¹)

The HELIOS concept

- Production of the heavy elements (or neutron deficient isotopes): heavy-ion fusion evaporation reactions
- Separation of the primary and secondary beam: e.g. S3-GANIL, MARA@JYFL
- Thermalization in the gas cell
- Repelling unwanted ions
- Formation of a cooled atomic beam through e.g. a 'de Laval' nozzle (gas jet)
- Resonant laser ionization: high-repetition rate laser system (>10 kHz)
- Ion capture and transport in the RF Ion Guide followed by mass separation
- Detection of the ions: radioactivity / ion counting

The HELIOS concept

- Total expected efficiency: 4%
- Strategy
 - In-gas cell laser ionization spectroscopy (broadband 5 GHz): rough laser scans, search for atomic transitions
 - In-gas jet laser ionization spectroscopy (narrow band 100 MHz)

From 'in-gas cell' to 'in-gas jet' laser spectroscopy

T. Sonoda *et al.* NIM B267 (2009) 2918, R. Ferrer *et al,* NIM B 291 (2012) 29 Y. Kudryavtsev et al., NIM B 297 (2013) 7

KU LEUVEN

Multi-Monfiguration Dirac Fock atomic physics calculations: ²²⁷Ac

KU LEUVEN

R. Beerwerth and S. Fritzsche (2016)

Magnetic dipole moments and electical quadrupole moments

• Shell model calculations (H. Grawe) are in good agreement with experimental quadrupole moments and magnetic dipole moments

KU LEUVEN

²⁰⁸Pb good core for shell model predictions (N=126) (²¹⁸U: Khuyagbaatar, - PRL 115 (2015))

Y. Kudryavtsev,- NIM B 376 (2016) 345–352

IGLIS @ KU Leuven

KU LEUVEN

IGLIS @ KU Leuven

Prototype gas cell for GANIL (S3-LEB)

۲

Gas Flow Simulation and Validation

• M=8: T=4 to 20 K (ideal case: 13K)

Visualisation of the gas jet

with planar-laser induced fluorescence (PLIF)

PLIF with copper atoms: first tests

Stagnation pressure 290 mbar, P_{jet} ~ 1 mbar, Mach 5.5

PLIF with copper atoms: first tests

• Characterize density, temperature and velocity distributions by laser spectroscopy in different areas of the jet.

KU LEUVEN

IGLIS @ S3LEB - SPIRAL2 - GANIL IGLIS @ MARA - JYFL

New opportunities with IGLIS

Conclusion and outlook

- Feasibility for in-gas jet laser ionization spectroscopy of actinium is proven
 - good efficiency (5.6 % duty factor corrected), good spectral resolution (~400 MHz)

KU LEUV

- Further off-line characterization will be performed at the IGLIS lab at KU Leuven
- Opens new route for precision laser spectroscopy measurements of neutrondeficient isotopes and study of pure isomeric beams produced in heavy-ion fusion evaporation reactions
 - N=Z line around and below ¹⁰⁰Sn
 - neutron-deficient deformed region A~150
 - very heavy element region
- On-line experiments at S3 (SPIRAL2 GANIL)

KU Leuven LISOL team

P. Creemers, L.P. Gaffney, L. Ghys, C. Granados, M. Huyse, Yu. Kudryavtsev, Y. Martínez, E. Mogilevskiy, S. Raeder, S. Sels, P. Van den Bergh, P. Van Duppen, A. Zadvornaya

GANIL- IPN Orsay – LPC Caen:

B. Bastin, D. Boilley, Ph. Dambre, P. Delahaye, P. Duchesne, X. Fléchard, S. Franchoo, N. Lecesne, H. Lu, F. Lutton, Y. Merrer, B. Osmond, J. Piot, O. Pochon, H. Savajols, J. C. Thomas, E. Traykov

University of Mainz:

R. Heinke, T. Kron, P. Nauberreit, P. Schoenberg, K. Wendt

GSI: M. Laatiaoui, M. Block

JYFL University of Jyväskylä: I. Moore, V. Sonnenschein

RILIS-ISOLDE: S. Rothe TRIUMF: P. Kunz, J. Lassen, A. Teigelhoefer

KU LEU

Mean charge radii

In order to determine mean charge radii:

- Calculate electronic factor and specific mass shift (R. Beerwerth, S. Fritzsche)

- Use King plot to test calculations

Mean charge radii

In order to determine mean charge radii:

- Calculate electronic factor and specific mass shift (R. Beerwerth, S. Fritzsche)

• Racah relative intensity ratio $5 \rightarrow 6'$ to $6 \rightarrow 6'$ r = 2.33 only followed at low power

New Gas Cell Design for S3@GANIL

KU LEUVEN