Search for Neutrino-less Double Beta Decay of ⁴⁸Ca - CANDLES -

UMEHARA, Saori <u>umehara@rcnp.osaka-u.ac.jp</u> Research Center for Nuclear Physics, Osaka University

CANDLES Collaboration

Outline

Double beta decay Double beta decay of ⁴⁸Ca CANDLES System = CaF₂(pure) scintillators + Liquid scintillator CANDLES III system at Kamioka underground lab. Expected backgrounds Shielding system for background reduction Further improvement Summary


```
    Why <sup>48</sup>Ca?
    Higher Q<sub>ββ</sub>-value(4.27MeV) ...
    →Low background
    because Q<sub>ββ</sub>-value is higher than BG
    E<sub>max</sub>=2.6MeV(<sup>208</sup>Tl, γ-ray), 3.3MeV(<sup>214</sup>Bi,β-ray)
```

Double beta decay of ⁴⁸Ca by using CaF₂ scintillators \rightarrow We installed the CANDLES III system at Kamioka Lab.

6

CANDLES III

CANDLES III

CANDLES at Kamioka underground laboratory

Main detector CaF₂ Scintillators (305kg)

Liquid Scintillator Tank(2m³)

> 13inch and 20inch PMTs with light pipes

CaF₂ scintillator (CaF₂(pure)) $30\overline{5}$ kg (96 modules \times 3.2kg) $\tau \sim 1 \mu sec$ Liquid scintillator (LS) 4 π active shield Volume: 2m³ τ ~ a few ten nsec 🥗 Large photomultiplier tube 13 inch PMT imes 48 20inch PMT imes 14 塗 Light pipe system Guide scintillation light to PMTs Light collection effi. : \times 1.8 Active Shielding Technique by FADC
 Different time constants CaF₂(pure) : ~1µsec Liquid scintillator : a few 10 nsec

Background from neutron capture

Neutron source run (²⁵²Cf)

1 hour of source run = 1 year of physics run

Senergy spectrum : well reproduced by MC of neutron capture γ -ray.

 2 (n,y) BG in Ovßß window is evaluated from MC spectrum.

(n,γ) BG: 3.4±0.4(stat.) evt/26crystals/60days (Run data, 3±1 evt)

Currently, most serious background component in CANDLES

Shielding system

Toward "Background Free Measurement"

Schematic view of the shielding system

CANDLES tank(stainless steel)
Pb(y-ray shield)

B sheet (neutron shield)

Shielding system : BG ~1/100 Pb bricks

- \cdot 7 ~ 12cm in thickness
- Reduce (n, γ) BG from rock.
- BG γ-rays from rock decrease by factor of ~1/120

B sheet

- B₄C loaded silicone rubber sheet
 5 mm in thickness
- \cdot Reduce thermal neutron
- N-capture events decrease by factor of ~1/30

Construction of the shielding system Shieldings inside/outside the tank BG rate : ~1/100

CANDLES III upgrade

Shielding system : installation in 2016

Cooling system : Already installed and operation started

 $\ref{eq:CaF_2}$ light output increases with low temperature(~-20 $^\circ\!\!\mathrm{C}$)

Sensitivity and R&D

	CANDLES III	Next CANDLES	Next CANDLES
Crystal	3.2kg×96 (305kg)	2% ⁴⁸ Ca (2 ton)	50% ⁴⁸ Ca (6 ton)
Energy Resolution	(4.0%)	2.8%(Req.)	0.5%(Req.)
Expected BG	0.27/year	<0.7 /3year	<0.2 /9year
<m<sub>v></m<sub>	0.5 eV	0.08	0.009
Current system with cooling system bolometer Enrichment: now on stage of mass production			
Good energy resolution by bolometer CaF ₂ (Eu) is OK ref: NIMA386(1997)453 by Milano aroup			
Now we have developed at sea level laboratory			

Double beta decay measurement R&D for CANDLES system Analysis for background rejection : pile-up events CANDLES III at Kamioka Lab. We installed the shielding system for detector sensitivity of 0.5 eV. BG rate will be reduced by ~1/100. R&D for next CANDLES Scintillating bolometer by using CaF₂(pure) Enriched ⁴⁸CaF₂(pure) scintillators Now: on stage of "cost effective" mass production of ⁴⁸Ca

Result of ELEGANT VI

Obtained Result Energy Spectra

10 3000 3250 3500 3750 4000 4250 4500 4750 5000

Energy(keV)

COUNTS(/40keV)

10 -1

'Sim

 Q_{etaeta} of ⁴⁸Ca Run summary (Measurement for 4 years) Live Time Run Number Expected BG of Event (²¹²Bi,²¹⁴Bi,²⁰⁸TI) kg•day First Run 1.30 1553 0 Second Run 3394 0 0.27

No events in $O_{\nu\beta\beta}$ Energy Window

 $0_{V\beta\beta}$ Half-Life of ${}^{48}Ca : > 5.8 \times 10^{22}$ year (90% C.L.) <m,> < (3.5-22) eV •4 π active shield is effective for background free measurement.

•Expected backgrounds are ²¹²Bi and ²⁰⁸Tl For higher sensitivity, we need a large amount of ⁴⁸Ca.

6