

UiO **Content of Physics**

University of Oslo

The statistical properties of ⁹²Mo and implications for the p-process

G.M. Tveten g.m.tveten@fys.uio.no Department of Physics University of Oslo

P-nuclei are stable, proton-rich isotopes that are bypassed by the s- and r-process

Sites of production? Type 2 Supernova or type 1a Supernova.

P-nuclei are stable, proton-rich isotopes that are bypassed by the s- and r-process

> H He

> Ne

Si

Where does all the ⁹²Mo come from?

G292.0+1.8

Sites of production? Type 2 Supernova or type 1a Supernova.

⁹²Mo is underproduced in calculations compared to solar abundances

⁹²Mo is underproduced in calculations compared to solar abundances

Idea: Use γ strength function (GSF) and nuclear level density (NLD) to constrain cross section

Setup at the Oslo cyclotron laboratory

Details

- 8x8 segmented Si-array at backwards angles 124°-140°
- 5"x5" 24 NaI(Tl) collimated scintillator

detectors

SiRi: Guttormsen et al. arXiv:1104.1289 [nucl-ex]

10⁶

Oslo data Known levels

Here too, we needed to rely on systematics.

Are we able to connect with existing data above S_n ?

Here too, we needed to rely on systematics.

Are we able to connect with existing data above S_n ?

The (p,g) cross section and (p,g) and (g,p) Maxwellian averaged reaction rates were calculated using TALYS

Collaborators, thanks! Questions?

G. M. Tveten,^{1,*} A. Spyrou,^{2,3,4} R. Schwengner,⁵ F. Naqvi,^{2,4} A. C. Larsen,¹ T. K. Eriksen,^{1,6} F. L. Bello Garrote,¹ L. A. Bernstein,⁷ D. L. Bleuel,⁷ L. Crespo Campo,¹ M. Guttormsen,¹ F. Giacoppo,^{1,8,9} A. Görgen,¹ T. W. Hagen,¹ K. Hadynska-Klek,^{1,10} M. Klintefjord,¹ B. S. Meyer,¹¹ H. T. Nyhus,¹ T. Renstrøm,¹ S. J. Rose,¹ E. Sahin,¹ S. Siem,¹ and T. G. Tornyi⁶

 ¹Department of Physics, University of Oslo, NO-0316 Oslo, Norway
²National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, Michigan 48824, USA
³Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA
⁴Joint Institute for Nuclear Astrophysics, Michigan State University, East Lansing, Michigan 48824, USA
⁵Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
⁶Department of Nuclear Physics, Research School of Physics and Engineering, The Australian National University, Canberra ACT 2601, Australia
⁷Lawrence Livermore National Laboratory, Livermore, California 94551, USA
⁸Helmholtz Institute Mainz, 55099 Mainz, Germany
⁹GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany
¹⁰INFN, Laboratori Nazionali di Legnaro Padova, Italy
¹¹Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA

INPC2016 - G. M. Tveten

 $P(E_i, E_{\gamma}) \propto \mathcal{T}(E_{\gamma}) \cdot \rho(E_f)$

