First result from **SCRIT** electron scattering facility : Charge density distribution of ¹³²Xe

Kyo Tsukada

Tohoku University

SCRIT collaboration

Tohoku Univ.	K. Kasama, K. Namba, T. Suda, T. Tamae
RIKEN	M. Hara, T. Hori, S. Ichikawa, T. Ohnishi,
	M. Wakasugi, M. Watanabe
Rikkyo Univ.	K. Adachi, A. Enokizono, T. Fujita, M. Hori,
	K. Kurita, S. Sasamura, M. Togasaki, N. Uchida
	K. Yamada

Shandong Univ. W. Shuo

Contents

- Introduction
- Apparatus
- Experiment and Data analysis
- Summary and Outlooks

Contents

Introduction

- Apparatus
- Experiment and Data analysis
- Summary and Outlooks

Electron scattering

Direct and unambiguous structure information of atomic nuclei

- Probe particle : electron, structureless particle
- Reaction mechanism : well known electromagnetic interaction
 - Charge and current coupling \rightarrow EM structure
 - Weak coupling \rightarrow probing whole volume without serious modification

valid for perturbation theory

Nuclei studied by electron scattering

Electron scattering is so powerful to investigate the nuclear structure information. But,

■Strictly limited to stable nuclei

□Almost no data of unstable nuclei (a few exceptions: ³H, ¹⁴C, ...)

Elastic electron scattering

- Relatively large cross section
- Doorway to various electron scattering experiments

$$\frac{d\sigma}{d\Omega} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot |Fc(q)|^2$$
Cross section of
Mott scattering Form factor
$$Fc(q) = \int \rho_C(\vec{r}) e^{i\vec{q}\vec{r}} d\vec{r}$$
Charge density distribution

Nuclear size with EM probe

- X-ray from muonic atom (2P-1S)
 - Measurement : $\langle r^2 \rangle^{1/2}$ with assumption of the nuclear shape
 - Target : Only stable nuclei
- Isotope shift of optical transition
 - Measurement : Relative shift of charge radius : $\delta{<}r^2{>}^{1/2}$
 - Target : Stable and unstable nuclei
- Electron scattering
 - Measurement : Form Factor
 - Target : Only stable nuclei, so far

Nuclear size with EM probe

- X-ray from muonic atom (2P-1S)
 - Measurement : $\langle r^2 \rangle^{1/2}$ with assumption of the nuclear shape
 - Target : Only stable nuclei
- Isotope shift of optical transition
 - Measurement : Relative shift of charge radius : $\delta {<} r^2 {>}^{1/2}$
 - Target : Stable and unstable nuclei
- Electron scattering
 - Measurement : Form Factor
 - Target : Only stable nuclei, so far

Nuclear size with EM probe

- X-ray from muonic atom (2P-1S)
 - Measurement : $\langle r^2 \rangle^{1/2}$ with assumption of the nuclear shape
 - Target : Only stable nuclei
- Isotope shift of optical transition
 - Measurement : Relative shift of charge radius : $\delta{<}r^2{>}^{1/2}$
 - Target : Stable and unstable nuclei
- Electron scattering
 - Measurement : Form Factor
 - Target : Only stable nuclei, so far

SCRIT system realizing electron scattering for unstable nuclei

Concept of **SCRIT**

Nucl. Instrum. Methods A532 (200

First goal of SCRIT project

 132 Sn

- unstable
- double magic (50+82)
- important roles for nuclear structure study

Luminosity requirement

Assumptions: Spectrometer acceptance ($d\Omega \sim 80 \text{ msr}$, $d\theta$:30-55 deg) Cross section calculated by DREPHA code BG is assumed to be ¹⁶O

Contents

- Introduction
- Apparatus
- Experiment and Data analysis
- Summary and Outlooks

SCRIT electron scattering facility

SCRIT electron scattering facility

WISES (Window-frame Spectrometer for Electron Scattering)

Details will be presented at 13/Sep L3-6 14:55- by A. Enokizono

Contents

- Introduction
- Apparatus
- Experiment and Data analysis
- Summary and Outlooks

Experiments with stable nuclei

• ¹³²Xe

- Stable nucleus (natural abundance : 26.9%)
- Separated from a standard xenon gas
- <u>No electron scattering</u>
- First physics data from SCRIT project

• ²⁰⁸Pb

- Stable nucleus (natural abundance : 52.4%)
- Evaporated from a lead wire by heating
- precise charge density distribution by electron scattering
- Commissioning data for SCRIT project

Both target ions were separated from natural materials by the mass-spectrometer of the **ERIS**.

<u>B. Frois et. al.,</u> Phys.Rev.Lett.38,152 (1977)

Experimental conditions

• ¹³²Xe

- Beam energy : 150, 200, 300 [MeV]
- Beam current : 250 [mA] \rightarrow 150 [mA] (typically)
- Vacuum pressure in SCRIT : $\sim 5 \times 10^{-8}$ [Pa]
- #ions injected into SCRIT : $\sim 2 \times 10^8$ particles/pulse
- Exp. Period :
 - 5 days for 150 [MeV]
 - 8 days for 200 [MeV]
 - 11 days for 300 [MeV]
- Duty : 15~25 [%] ← including IonIN/OUT switching and the beam injection sequence
- ²⁰⁸Pb
 - Almost similar to ¹³²Xe.

Data analysis

- Momentum distribution
 - Clear elastic peak from
 - targets (IonIN) and residual gas (IonOUT)
- Vertex point distribution

Ion IN

Ion OUT

280

400 Ee = 300 MeV

300

200

100

• Events from SCRIT inside

Background contribution

- Beam current : ~200 mA \rightarrow 10¹⁸ [e⁻/s]
- Residual gases in the SCRIT : $\sim 5 \times 10^{-8}$ Pa

→ 6x10⁸ [particles/cm²]
 → L ~ 0.6x10²⁷ [/cm²/s]
 for neutral gas

- Residual gases are ionized by the beam and trapped.
 - Amount is similar to the neutral ones.

- Luminosity of residual gas can exceed 1×10^{27} [/cm²/s].
 - It is not small, and should be subtracted.

Background contribution

- Beam current : ~200 mA \rightarrow 10¹⁸ [e⁻/s]
- Residual gases in the SCRIT : $\sim 5 \times 10^{-8}$ Pa

→ 6x10⁸ [particles/cm²]
 → L ~ 0.6x10²⁷ [/cm²/s]
 for neutral gas

- Residual gases are ionized by the beam and trapped.
 - Amount is similar to the neutral ones.

- Luminosity of residual gas can exceed 1×10^{27} [/cm²/s].
 - It is not small, and should be subtracted.

Angular distributions of ²⁰⁸Pb

- The cross sections are calculated by a DWBA code (DREPHA).
- The charge density distribution is expressed by the Sum Of Gaussian.
- The luminosity is considered as free parameter.

Angular distribution of ¹³²Xe

- The cross sections aree calculated by a DWBA code (DREPHA).
- The charge density distribution is expressed by the 2-parameter Fermi.
- The luminosity and C, t are considered as free parameter.

Summary and outlook

Summary

- We have constructed **SCRIT** electron scattering facility.
- The commissioning experiment with stable nuclei successfully carried out.
 - The angular distribution of ²⁰⁸Pb
 - The angular distribution of 132 Xe and nuclear size parameters (C and t)
- The facility is almost ready to start electron scattering with unstable nucleus target.

Outlook

- First experiment of e-RI scattering will be performed.
 - ¹³⁸Xe : demonstration, soon,
 - ¹³²Sn : the first goal, in one year.

Contribution of inelastic scattering for ¹³²Xe

- Transition density of the first 2⁺ state is calculated by a relativistic mean field theory. Private communication
- Cross section of the inela. scatt. is calculated by a phase shift code (MEFCAL).
- The contribution is **negligible** in our kinematical region.

