

Neutrinoless Double-Beta Decay with EXO: Achievements and Prospects

Tamer Tolba

(on behalf of the EXO-200 and nEXO collaborations)

Institute of High Energy Physics – Chinese Academy of Sciences

Beijing, China

EXO (Enriched Xenon Observatory)

Why Xe?

- Monolithic detector
 LXe is self shielding
 minimize surface contamination.
- Possible background free measurements -> Tagging daughter nuclide ¹³⁶Ba⁺.
- Xenon isotopic enrichment is easier \rightarrow Xenon is a (noble) gas & ¹³⁶Xe is the heaviest isotope.
- Xenon is "reusable" -> Can be re-purified & recycled during the experiment.
- Minimal cosmogenic activation -> No long lived radioactive isotopes of Xenon.
 Energy resolution in LXe can be impressed to a series.
- Energy resolution in LXe can be improved -> Scintillation light/ionization ratio.

$2v\beta\beta$?

- \geq 2 β decay has been observed in app. 10 isotopes before EXO.
- \blacktriangleright EXO-200 is the first experiment observe $2\nu\beta\beta$ decay for ¹³⁶Xe isotope.

Why 0vßß?

- Majorana or Dirac neutrino.
- Lepton number violating process.
- \succ Absolute neutrino mass.

$$\Gamma^{0v} = G^{0v} |M^{0v}|^2 |\langle m_{\beta\beta} \rangle|^2$$

 $\Gamma^{0v} = \text{decay rate}$ G^{0v} = phase-space factor. M^{0v} = Nuclear matrix element. $\langle m_{BB} \rangle$ = effective neutrino mass

0vββ requirements:

- High energy resolution.
- Large Isotope mass.
- Low background.

EXO (Enriched Xenon Observatory)

EXO-200 Results for 2vββ Decay "Phase I"

EXO-200 Results for 0vββ Decay "Phase I"

The Future 5 tonne nEXO Detector

- LXe TPC "as similar to EXO-200 as possible" → but 3x larger volume (~25x larger mass).
- 5 tonnes of ^{enr}Xe (with 5 yr of data taking) → Sensitivity T_{1/2}=6.6x10²⁷ yr (entirely cover inverted hierarchy (< 10 meV)).
- 4.7 tonnes of active ^{enr}Xe (90% or higher) \rightarrow 1.0% (σ /E) energy resolution.
- Possible later upgrade to Ba tagging \rightarrow increase sensitivity and probe normal hierarchy.

Optimization from EXO-200 to nEXO (R&D)

Parameter to optimize	Effect
~30x volume/mass	To give sensitivity to the inverted hierarchy
No cathode in the middle	Larger low background volume/no ²¹⁴ Bi in the middle
6x HV for the same field	Larger detector and one drift cell
>3x electron lifetime	Larger detector and one drift cell
Better photodetector coverage	Energy resolution, lower scintillation threshold
SiPM instead of APDs	Higher gain, lower bias, lighter, E resolution, lower scintillation threshold
Charge readout tiles instead of wires	Better mechanical robustness and better γ/β Discrimination
Cold "in LXe" electronics	Lower noise, more stable, fewer cables/feedthroughs, E resolution, lower threshold for Compton ID
Lower outgassing components	Longer electron lifetime
Different calibration methods	Very "deep" detector (by design)
Deeper site	Less cosmogenic activation
Larger vessels	5 ton detector and more shielding

nEXO Charge Readout R&D

- A modular and pad-like charge collection scheme is under study to replace a more traditional wire readout.

- Preliminary testing of tile: Prototype 3mm pitch, crossed strip quartz tile has been produced (@ IHEP/IME) and tested in liquid Xenon with ²⁰⁷Bi (@ US).

Effect on SiPM performance (Gain, PDE, correlated noise, physical damage ...)!!!

VUV sensitive SiPMs

New generation FBK devices have reached PDE > 15%@ 170nm.

Radio assay results of the FBK devices are also very encouraging.

SiPMs Performance in High Elect. Field Values

IHEP LXe-Setup

T. Tolba, INPC 2016

UV FBK

Conclusions/Outlook

- EXO-200 Phase-II started after the recovery from the WIPP underground incidents.
- Many nEXO R&D programs dedicated to study the SiPMs performance.
- Various nEXO R&D programs are in progress.

University of Bern, Switzerland — J-L Vuilleumier

Carleton University, Ottawa ON, Canada — M Dunford, R Gornea, K Graham, R Killick, T Koffas, C Licciardi, D Sinclair Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr., T Walton Drexel University, Philadelphia PA, USA — E Callaghan, MJ Dolinski, YH Lin, E Smith, Y-R Yen Duke University, Durham NC, USA - PS Barbeau Friedrich-Alexander-University Erlangen, Nuremberg, Germany — G. Anton, R. Bayerlein, J. Hoessl, P. Hufschmidt, A. Jamil, T. Michel, M. Wagenpfeil, G. Wrede, T. Ziegler IBS Center for Underground Physics, Daejeon, South Korea - DS Leonard IHEP Beijing, People's Republic of China — G Cao, W Cen, T Tolba, L Wen, J Zhao ITEP Moscow, Russia — V Belov, A Burenkov, M Danilov, A Dolgolenko, A Karelin, A Kuchenkov, V Stekhanov, O Zeldovich University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, S Li, L Yang Indiana University, Bloomington IN, USA — JB Albert, S Daugherty, TN Johnson, LJ Kaufman, J Zettlemoyer Laurentian University, Sudbury ON, Canada — B Cleveland, A DerMesrobian-Kabakian, J Farine, U Wichoski University of Maryland, College Park MD, USA - C Hall University of Massachusetts, Amherst MA, USA — S Feyzbakhsh, S Johnston, J King, A Pocar McGill University, Montreal QC, Canada — T Brunner, K Murray SLAC National Accelerator Laboratory, Menlo Park CA, USA — M Breidenbach, R Conley, T Daniels, J Davis, , S Delaguis R Herbst, A Johnson, M Kwiatkowski, B Mong, A Ódian, CY Prescott, PC Rowson, JJ Russell, K Skarpaas, A Waite, M Wittgen University of South Dakota, Vermillion SD, USA - J Daughhetee, R MacLellan Stanford University, Stanford CA, USA — R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, D Moore, I Ostrovskiy, A Schubert, M Weber Stony Brook University, SUNY, Stony Brook, NY, USA — K Kumar, O Njoya, M Tarka Technical University of Munich, Garching, Germany — W Feldmeier, P Fierlinger, M Marino TRIUMF, Vancouver BC, Canada — J Dilling, R Krücken, Y Lan, F Retière, V Strickland

University of Alabama, Tuscaloosa AL, USA — T Didberidze, M Hughes, A Piepke, R Tsang University of Bern, Switzerland — J-L Vuilleumier Brookhaven National Laboratory, Upton NY, USA — M Chiu, G De Geronimo, S Li, V Radeka, T Rao, G Smith, T Tsang, B Yu California Institute of Technology, Pasadena CA, USA - P Vogel Carleton University, Ottawa ON, Canada — I Badhrees, Y Baribeau, M Bowcock, M Dunford, M Facina, R Gornea, K Graham, P Gravelle, R Killick, T Koffas, C Licciardi, K McFarlane, R Schnarr, D Sinclair Colorado State University, Fort Collins CO, USA — C Chambers, A Craycraft, W Fairbank Jr, T Walton Drexel University, Philadelphia PA, USA — E Callaghan, MJ Dolinski, YH Lin, E Smith, Y-R Yen Duke University, Durham NC, USA — PS Barbeau, G Swift University of Erlangen-Nuremberg, Erlangen, Germany — G Anton, R Bayerlein, J Hoessl, P Hufschmidt, A Jamil, T Michel, T Ziegler IBS Center for Underground Physics, Daejeon, South Korea — DS Leonard IHEP Beijing, People's Republic of China — G Cao, W Cen, X Jiang, H Li, Z Ning, X Sun, T Tolba, W Wei, L Wen, W Wu, J Zhao ITEP Moscow, Russia — V Belov, A Burenkov, A Karelin, A Kobyakin, A Kuchenkov, V Stekhanov, O Zeldovich University of Illinois, Urbana-Champaign IL, USA — D Beck, M Coon, S Li, L Yang Indiana University, Bloomington IN, USA — JB Albert, S Daugherty, TN Johnson, LJ Kaufman, G Visser, J Zettlemoyer University of California, Irvine, Irvine CA, USA — M Moe Laurentian University, Sudbury ON, Canada — B Cleveland, A Der Mesrobian-Kabakian, J Farine, U Wichoski Lawrence Livermore National Laboratory, Livermore CA, USA — O Alford, J Brodsky, M Heffner, G Holtmeier, A House, M Johnson, S Sangiorgio University of Massachusetts, Amherst MA, USA — S Feyzbakhsh, S Johnston, M Negus, A Pocar McGill University, Montreal QC, Canada — T Brunner, K Murray Oak Ridge National Laboratory, Oak Ridge TN, USA - L Fabris, D Hornback, RJ Newby, K Ziock Pacific Northwest National Laboratory, Richland, WA, USA — EW Hoppe, JL Orrell Rensselaer Polytechnic Institute, Troy NY, USA - E Brown, K Odgers SLAC National Accelerator Laboratory, Menlo Park CA, USA — J Dalmasson, T Daniels, S Delaguis, G Haller, R Herbst, M Kwiatkowski, A Odian, M Oriunno, B Mong, PC Rowson, K Skarpaas University of South Dakota, Vermillion SD, USA - J Daughhetee, R MacLellan Stanford University, Stanford CA, USA — R DeVoe, D Fudenberg, G Gratta, M Jewell, S Kravitz, D Moore, I Ostrovskiy, A Schubert, M Weber Stony Brook University, SUNY, Stony Brook, NY, USA — K Kumar, O Njoya, M Tarka Technical University of Munich, Garching, Germany — P Fierlinger, M Marino TRIUMF, Vancouver BC, Canada — J Dilling, P Gumplinger, R Krücken, Y Lan, F Retière, V Strickland 26/09/2016 T. Tolba, INPC 2016

Spares

EXO-200 "Phase II"

- → EXO-200 Phase-II started after the recovery from the WIPP underground incidents:
- → Detector upgrade (electronics and deradonator).
- → Increase drift field (~375 V/cm -> ~585 V/cm).
- → Phase-II physics data taking (started Apr. 2016).
- → Data shows that the detector reached excellent xenon purity and ultra-low internal Rn level shortly after restart.


```
DOE Accident Inv. Rep., Mar 2014
```


Rn level in TPC since Jan. 31, 2016

Xenon purity since Jan. 31, 2016

Event multiplicity and background discrimination (example from EXO-200 real data)

EXO -200 Detector Calibration

¹³⁷Cs, ⁶⁰Co and ²²⁸Th sources are utilized to calibrate the TPC response to γ radiation

²²⁸Th is deployed every few days near the cathode to monitor the e⁻ life time and measure the energy response.

Ionization-Scintillation anti-correlation in LXe

Energy resolution (@ 2615 keV γ line) for: Scintillation:5% Ionization:3% Rotated:1.25% 26/09/2016

EXO-200 Phase II Sensitivity

EXO-200 can reach $0\nu\beta\beta$ half-life sensitivity of 5.7x10²⁵ ys.

With lower threshold, EXO-200 can improve measurement of $^{136}Xe~2\nu\beta\beta$ and searches in other physics channels.

EXO-200: Nature (2014), doi:10.1038/nature13432

GERDA Phase 2: Public released result. June, 2016 (frequentist limit)

> KamLAND-Zen: arXiv:1605.02889 (2016)

- "2.5MeV gamma ray" attenuation length in LXe = 8.5 cm

tenon

LXe mass (kg)	Diam. or length (cm)
5000	130
150	40
5	13

The role of the standoff distance in background identification and suppression

Example: nEXO, 5 yr data, $0\nu\beta\beta @ T_{1/2}=6.6x10^{27}$ yr, projected backgrounds from subsets of the total volume

The fit gets to see all this information and use it in the optimal way

Final State Ba⁺ Tagging (R&D)

Aim \rightarrow background free experiment by tagging the unique 2 β decay daughter (¹³⁶Ba⁺).

- Locate the ion in the TPC

- Fast and precise determination of the decay vertex.
- ➤ knowing the drift properties of the ion in liquid (or gas) Xe.
- Extract the ion to a low pressure analysis chamber
 - \succ Efficiency of the extraction process \rightarrow Ion life time in the Lxe.

-Detect and identify the ion

> e.g. RF trap using resonant light scattering (or any other identifying method).

Charge Readout Tiles

- EXO-200 used wires for charge-readout
- Produced by IHEP/IME; functional testing in LXe in the US.
 - Increased mechanical support
- 10cm x 10cm Prototype Tile
- Metallized strips on fused silica substrate
- 60 orthogonal channels (30 x 30)
- 3mm strip pitch
- Strip intersections isolated with SiO₂ layer
- Currently testing in LXe with a ²⁰⁷Bi source

IHEP/IME tile anode, mounted to underside of cell lid

