

Industrial Photonuclear Physics

Assay of Gold and other Elements in Mineral Ores using Gamma Activation Analysis

James Tickner, Chanel Tissot and Justin Delaney INPC 2016, Adelaide

CSIRO MINERAL RESOURCES www.csiro.au

Outline

- Minerals processing 101 why is gold assay both important and difficult?
- Searching for an alternative nuclear method
- Gamma activation analysis
 - Basic mechanism
 - Historical applications
 - Cross-section measurements
- Experimental validation
- Practical implementation of an industrial assay system

Why is gold assay important?

Why is gold assay difficult?

- Low concentrations (often parts-per-million levels or lower)
- Non-uniform distribution
- High throughput needed (60 samples/h)
- Ideally, analysis 'in the field'

Current technology (fire assay)

- Measures 15-50 g samples
- Laborious process; many safety issues
- Skilled technicians required

Gold is \$10b pa industry in Australia >\$100b world-wide

Requirements for analysis method

Gamma activation analysis (GAA)

- Use high-energy X-rays to induce reactions in target nuclei
- Measure resulting activity and relate to element concentration

History of GAA for gold and development challenges

History

- Discovery of ¹⁹⁷Au meta-state (1940s)
- Photoexcitation of meta-state (1950s)
- Identification of ¹⁹⁷Au(γ,γ')^{197m}Au reaction for gold analysis (1960s)
- Establishment of commercial assay lab in former Soviet Union (1970s)

Limited subsequent commercial development

Challenges

- Improve sensitivity and accuracy
- Limited control of beam energy and power
 - Need to have on-line correction method for accurate analysis
- Need to correct for variations in sample density and composition
 - Need better understanding of mechanism and cross-section for producing isomeric states
 - Develop Monte Carlo model of activation process to determine corrections

Reference foil for on-line stability control

- Basic idea use a monitor foil of a different element
- Requirements:
 - Isomeric state
 - Similar half-life to ¹⁹⁷Au-M
 - Similar but lower gamma-ray emission energy
 - No competing reactions
 - Rare in nature (or at least in gold deposits)
 - Relatively weak activation

⁷⁷Se, 17.5 s, 162 keV γ ⁷⁹Br, 4.86 s, 207 keV γ

Gamma activation cross-sections - expectations

- Results from Collins et al (Phys Rev C 46(3) p952)
- They argue strongly for limited number of gateway levels
- Their model under-shoots data above ~6 MeV

IS energy (MeV)	$\sigma\Gamma$ (ev.barns)
1.7±0.3	0.7±0.3
2.5±0.1	5±0.5
3.2±0.15	45±5
4.2±0.2	200±40
6.0?	8000?

Experimental cross-section behaviour disagrees

- $\sigma\Gamma \simeq 10^3$ -10⁴ eV.barns
 - Extremely large state widths (>tens eV)
 - Thermal broadening will be negligible
 - Peak cross-section in range tens to hundreds of barns
- Atomic cross-section in gold is only ~12-14 barns in this energy range
- Strong self-absorption should be evident

Non-atomic absorption is < 1-2 b

10 | Industrial Photonuclear Physics: Assay of Gold and other Elements in Mineral Ores using Gamma Activation Analysis | James Tickner

Suggested resolution of disagreement

- Quasi-continuous cross-section formed from large number (hundreds/thousands) of discrete resonant states
- Determine cross-sections through semi-empirical fit to:
 - Existing data from literature
 - ^{197m}Au/^{79m}Br ratio that we measure

Condensed single-history Monte Carlo implementation

Reference foil correction for sample composition

Gold activation signal per unit gold mass versus sample mass

With

bromine

correction

Experimental validation

- LINAC manufactured by Mevex Corp. (Canada)
- Tests carried out in their facility in Ottawa
- LINAC operated at ~4 kW, 8.4 MeV E_{Peak}
- Planar HPGe detectors
- Pneumatic shuttle system
- Heavy steel shielding
- Concrete bunker
- Manual sample loading

Experimental performance

Experimental performance - summary

- Measurement accuracy defined as difference between GAA result and 'true' gold content of sample as presented
- Errors quoted at 1 standard deviation (68% confidence interval)

Parameter	Results to date (demonstrated)	Final system (extrapolated)				
Measurement time	7.5 min	1.5 min				
Throughput	6 samples/hour	80 samples/hour				
Det. limit (3 σ)	60-75 ppb	<30 ppb				
Accuracy @ 0.1 ppm	35% (0.035 ppm)	15% (0.015 ppm)				
Accuracy @ 0.3 ppm	15% (0.045 ppm)	6.5% (0.020 ppm)				
Accuracy @ >1 ppm	Better than 5%	Better than 3%				
Accuracy @ >30 ppm	< 1-2%	< 1%				

Other elements

1 1.008]																2 4.003
H		Fully demonstrated											He				
Hydrogen		i dily demonstrated															Helium
3 6.941	4 9.012	Even entry and a local start										5 10.811	6 12.011	7 14.007	8 15.999	9 18.998	10 20.180
Li	Be	Experimental validation									В	С	Ν	0	F	Ne	
Lithium	Beryllium										Boron	Carbon	Nitrogen	Oxygen	Fluorine	Neon	
11 22.990	12 24.305	^{2 24.305} Theoretically accessible									13 26.982	14 28.086	15 30.974	16 32.065	17 35.453	18 39.948	
Na	Mg	······································										AI	Si	Р	S	Cl	Ar
Sodium	Magnesium											Aluminium	Silicon	Phosphorus	Sulphur	Chlorine	Argon
19 39.098	20 40.078	21 44.956	22 47.867	23 50.941	24 51.996	25 54.938	26 55.845	27 58.933	28 58.693	29 63.546	30 65.409	31 69.723	32 72.640	33 74.922	34 78.960	35 79.904	36 83.798
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Potassium	Calcium	Scandium	Titanium	Vanadium	Chromium	Manganese	Iron	Cobalt	Nickel	Copper	Zinc	Gallium	Germanium	Arsenic	Selenium	Bromine	Krypton
37 85.468	38 87.620	39 88.906	40 91.224	41 92.906	42 95.940	43 [98]	44 101.070	45 102.906	46 106.420	47 107.868	48 112.411	49 114.818	50 118.710	51 121.760	52 127.600	53 126.904	54 131.293
Rb	Sr	Υ	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
Rubidium	Strontium	Yttrium	Zirconium	Niobium	Moly'num	Technetium	Ruthenium	Rhodium	Palladium	Silver	Cadmium	Indium	Tin	Antinomy	Tellurium	Iodine	Xenon
55 132.905	56 137.327		72 178.490	73 180.948	74 183.840	75 186.207	76 190.230	77 192.217	78 195.078	79 196.967	80 200.590	81 204.383	82 207.200	83 208.980	84 [209]	85 [210]	86 [222]
Cs	Ba		Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Cesium	Barium		Hafnium	Tantalum	Tungsten	Rhenium	Osmium	Iridium	Platinum	Gold	Mercury	Thallium	Lead	Bismuth	Polonium	Astatine	Radon
87 [223]	88 [226]																
Fr	Ra		57 138.905	58 140.116	59 140.908	60 144.240	61 [145]	62 150.360	63 151.964	64 157.250	65 158.925	66 162.500	67 164.930	68 167.259	69 168.934	70 173.040	71 174.967
Francium	Radium		La 🗌	Ce	Dr	Nd	Pm	Sm	Eu	Gd	Th	Dv	Ho	Er	Tm	Vh	1.0
			Lanthanum	Corium	Dridumium	Noodumium	Bromothium	Samarium	Europium	Gadalinium	Torbium	Dusprosium	Holmium	Erbium	Thulium	Vttorbium	Lutotium
			89 [227]	90 232.038	91 231.036	92 238.029	93 [237]	94 [244]	Laropium	Gauonnum	reibiuili	bysprosidin	Hommum	Erorum	munum	raterorum	Laterium
				TL	De	1		D									
			AC	In	Pa	U	ир	Pu									
			Actinium	Thorium	Proactinium	Uranium	Neptunium	Plutonium									

Establishing a commercial analysis facility

- Secured investment funding
- Launched new company
- Establish flexible, high-power X-ray facility in Australia by mid-2017
 - Variable 8-14 MeV e-beam energy
 - Up to 8 kW beam power
- Establish commercial gold assay business
- Work with manufacturer to 'containerise' system for field applications

CSIRO Mineral Resources

Dr James Tickner

- t +61 8 8303 8430
- e james.tickner@csiro.au
- w www.csiro.au

CSIRO MINERAL RESOURCES

