Status of the low-energy facilities for antiproton and heavy ion experiments at FAIR

Thomas Stöhlker Helmholtz Institute Jena, GSI, & Friedrich Schiller University, Jena Eberhard Widmann Stefan Meyer Institute, Vienna

Introduction

The Facilities: HITRAP & CRYRING

CRYRING: Physics Case (ions)

Novel Scheme to Connect ESR with FAIR for pbars

Summary and Outlook

The International Facility for Antiproton and Ion Research

FLAIR Physics Topics with Antiprotons

- Spectroscopy for tests of CPT and QED
 - Antiprotonic atoms (pbar-He, pbar-p), antihydrogen
- Atomic collisions

•

- Sub-femtosecond correlated dynamics: ionization, energy loss, antimatter-matter collisions
- Antiprotons as hadronic probes
 - X-rays of light antiprotonic atoms: lowenergy QCD
 - X-rays of neutron-rich nuclei: nuclear structure (halo)
 - pbar-p cross section, nbar interaction
 - Strangeness –2 production
- Medical applications: tumor therapy

Features of FLAIR

- Low-energy, highbrilliance beams for effective stopping
- High effective collision rates with USR: fully kinematic measurements
- Continuous beams: only possible @ FLAIR
- availability of radioactive ions offers synergies
- High energies, high intensities, slow extraction

E.Widmann, 2007

Features of a Next-generation Lowenergy Antiproton Facility

Feature	Solution
Higher intensity	Accumulation scheme
Fast and slow extraction	Coincidence experiments (nuclear physics)
Cooled beams down to < 500 keV	Storage rings
Availability of pbar and RI	FAIR

E.Widmann, 2007

FLAIR@ FAIR - Baseline Technical Report 2005

- High brightness low energy beams
 - two storage rings with 300 keV (LSR) and 20 keV (USR)
 - electron cooling
 - $\epsilon \sim 1~\pi$ mm mrad
 - ∆p/p ~ 10-4
- Storage rings with internal targets for collision studies
- Slow and fast extraction
- Ion traps
 - HITRAP facility for HCI & pbar
- Many new experiments possible
- same facilities can be used for HCI

Factor 100 more pbar trapped or stopped in gas targets than now

Introduction

The Facilities: HITRAP & CRYRING

CRYRING: Physics Case (ions)

Novel Scheme to Connect ESR with FAIR for pbars

Summary and Outlook

Cooled Heavy Ions at GSI/FAIR

ESR – From 400 to 4 MeV/u

ESR – Experimental Storage Ring at GSI with stochastic and electron cooling

1100 $\mu A \rightarrow$ 180 $\mu A \rightarrow$ 25 μA

HITRAP: g-factor apparatus

Project status

- Beamline from ESR up to the Cave is ready, fast extraction from ESR works
- Assembly of the ring is ongoing, first sections are under vacuum
- Local ion source is producing singly charged ions, transmission beyond RFQ.
- Commissioning of ring with beam early 2016
- UHV late 2016
- ESR beam ~ 2018 (depending on GSI/FAIR)
- BMBF Verbundforschung for 2015-2018 funds first set of experimental installations for AP/SPARC

CRYRING: First transfer of ions from ESR to CYRING

Introduction

The Facilities: HITRAP & CRYRING

CRYRING: Physics Case (ions)

Novel Scheme to Connect ESR with FAIR for pbars

Summary and Outlook

GSI Helmholtzzentrum für Schwerionenforschung GmbH

CRYRING@ESR: Highly-Charged lons at Low Energies

Spectroscopy for tests of QED High-precision x-ray spectroscopy 1s-Lamb-Shift Two-Electron-QED Recoil ion momentum spectroscopy Highly-excited stated Laser spectroscopy Recombination spectroscopy with high resolution

Atomic collisions

- Sub-femtosecond correlated dynamics
- Unexplored regime: strong perturbation Q/v

• Nuclear Physics at low-energies

- exotic nuclear decay modes
- astrophysical reactions

Features@Cryring

- Low-energy and electron cooled beams
- Electron cooling with adiabatic expansion
- High-luminosity for in-ring experiments
- Very fast deceleration 7 T/s
- Internal jet and electron target
- Slow extraction

CRYRING / FAIR

• atomic and nuclear physics of exotic systems al low energy

The European Physical Journal

Special Topics

Physics book: CRYRING@ESR

M. Lestinsky, Y. Litvinov and T. Stöhlker (Eds.)

🖄 Springer

in print

- circumference: 54 m
- decelerate ions down to 7‰ c
- UHV: p < 10⁻¹¹ mbar
- gas and electron targets
- e-cooler
- several experiment stations

CRYRING in the SIS18 target hall @ GSI/FAIR

Introduction

The Facilities: HITRAP & CRYRING

CRYRING: Physics Case (ions)

Novel Scheme to Connect ESR with FAIR for Pbars

Summary and Outlook

Modularized Start Version of FAIR and beyond

FLAIR@ESR CRYRING, HITRAP, USR

CRYRING@ESR, may enable a much earlier realization of the physics program of FLAIR with slow anti-protons.

RESR

ESR

30 MeV pbars from RESR (0.8 Tm)

2.2 GeV pbars from CR (10 Tm)

Additional Beamline to Exploit the Physics Potential of FAIR

stable and exotic ions and antiprotons from HESR to ESR (not MSV)

- Early realization of pbar @ FLAIR
- Exotic nuclei in storage rings
- Protons from SIS18 to APPA Cave

The operation scheme to provide the 1 GeV, N = 1×10^9 antiproton beam in the HESR

Operation Scheme of HESR Deceleration for Antiproton Flux to ESR/CRYRING

Operation Scheme of ESR for CRYRING

T. Katayama et al., Phys. Scr. T166 (2015) 014073 (9pp)

Thank you for your attention !

Acknowledgements

Project team: **F. Herfurth**, **Michael Lestinsky**, **A. Bräuning-Demian**, R. Bär, H. Danared, C. Dimopoulou, O. Dolinskyy, W. Enders, M. Engström, S. Fedotova, B. Franzke, M. Frey, W. Geithner, O. Gorda, L. Heyl, P. Hülsmann, A. Källberg, Th. Köhler, S. Litvinov, Y. Litvinov, J. Mohr, I. Pschorn, A. Reiter, G. Riefert, J. Roßbach, A. Simonsson, T. Sieber, J. Sjöholm, M. Steck, Th. Stöhlker, G. Vorobjev, N. Winckler, ...

GSI + Stockholm University

- + KVI Groningen
- + HI Jena
- + University Jena
- + Krakow University

FLAIR Layout

Ring parameters

Circumference	54.17 m (ESR/2)
Rigidity at injection for ions (p, pbar)	1.44 Tm (0.8 Tm)
Highest possible injection energy for p, pbar	30 MeV (capped by rad. safety)
- for ¹² C ⁶⁺	24.7 MeV/u
- for ²³⁸ U ⁹²⁺ (²³⁸ U ⁸⁹⁺)	14.8 MeV/u (13.9 MeV/u)
HCI beam lifetimes	3s (300keV/u) 1000s (10 MeV/u)
Lowest Rigidity	0.054 Tm
Lowest Energy	Charge exchange limited
Magnet ramping (de- and acceleration)	1 T/s (4 T/s, 7 T/s)
Vacuum pressure (N ₂ equiv.)	10 ⁻¹² – 10 ⁻¹¹ mbar
Beam injection	Multiturn and fast
Beam extraction	slow and fast
Ion source for stand alone operation	Yes (300 keV/u, A/q < 2.85)
Experimental areas	YRO3, YRO9, YRE

Status: Summer 2015

CRYRING: Stockholm

High Resolution DR Resonances as measured at CRYRING/Stockholm

28

Low-Energy DR Spectrum of Li-like Neodymium (¹⁵⁰Nd⁵⁷⁺)

- the possibility of the full candidates of interest (H 2008).
- The energy-sharp resonant for tensity of associated beam and of different isobars, atomic m The unique signatures of DR

- Nuclear size effect
- Hyperfine splitting
- Lifetimes of excited atomic states
- Isotope purification scheme

FAIR-MSV: APPA Facilities

Beam Facilities / Trapping & Storage

40 127300 127400 127500 127600 127700 127800 127900 128000 128100 128200 frequency / Hz

Physics Case

- Precision tests of QED
 - 1S Lamb shift
 - Electron binding energies
- Supercritical fields
- Electron spectrometry
- Reaction microscopes
- Dielectronic recombination
- Search for NEEC process
- Astrophysical capture reactions
- Transfer reactions

Dielectronic Recombination at CRYRING

CRYRING Electron Cooler → About two orders of magnitude higher resolving power

The operation scheme to provide the 1 GeV, $N = 1 \times 10^9$ antiproton beam in the HESR

Operation Scheme of ESR for CRYRING

T. Katayama