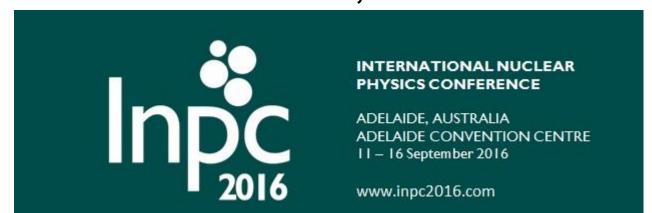
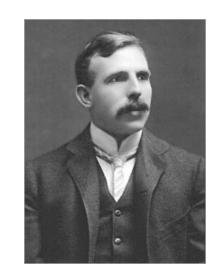

Structure of Finite Nuclei Starting at the Quark Level

Anthony W. Thomas


INPC2016 Adelaide: 12th September 2016

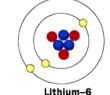
Outline

- Start from a QCD-inspired model of hadron structure
- Ask how that internal structure is modified in-medium
- This naturally leads to saturation
 + predictions for all hadrons (e.g. hypernuclei...)
- Derive effective forces (Skyrme type): apply to finite nuclei
- Test predictions for quantities sensitive to internal structure: DIS structure functions, form factors in-medium....

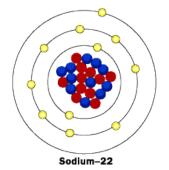


Rutherford

Discovered that alpha particles went straight through matter – most of the time



Isotopes of Hydrogen, Helium, Lithium and Sodium



Concluded matter is mainly empty space!

There is a heavy nucleus surrounded at a (comparatively great distance by electrons)

 Since the neutron was discovered by Chadwick, nuclei have been built from neutrons and protons, with exactly the same properties in-medium as outside, interacting through the exchange of pions and other mesons

- BUT is that the whole story?
- After all, along came QCD in the 1970s!

BUT regarded as irrelevant to nuclear structure.....

D. Alan Bromley (Yale) to Stan Brodsky in 1982

"Stan, you have to understand -- in nuclear physics we are only interested in how protons and neutrons make up a nucleus.

We are <u>not</u> interested in what is inside of a proton."

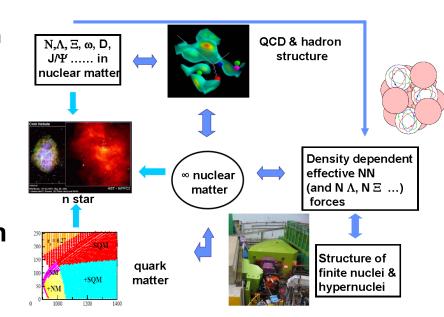
D. Alan Bromley (Yale) to Stan Brodsky in 1982

"Stan, you have to understand -- in nuclear physics we are only interested in how protons and neutrons make up a nucleus.

We are <u>not</u> interested in what is inside of a proton."

Fundamental Question for Nuclear Physics

- Is the nucleon mmmutable?
- i.e. When immersed in a nuclear medium with applied scalar field strength of order half its mass is it really unchanged??
- When looked at in the context of QCD as the theory of the strong force clearly NO
- Is this irrelevant to nuclear structure? NO
- Indeed, we argue it is of fundamental importance.....



A different approach: QMC Model

(Guichon, Saito, Tsushima et al., Rodionov et al. - see Saito et al., Progress Part. Nucl. Phys. 58 (2007) 1 for a review)

- Start with quark model (MIT bag/NJL...) for all hadrons
- Introduce a relativistic Lagrangian with σ, ω and ρ mesons coupling to non-strange quarks
- Hence <u>only 3 parameters</u>: g^q_{σ,ω,ρ}
 - determine by fitting to saturation properties of nuclear matter (ρ_0 , E/A and symmetry energy)

 Must solve self-consistently for the internal structure of baryons in-medium

Effect of scalar field on quark spinor

MIT bag model: quark spinor modified in bound nucleon

$$\Psi = \frac{\mathcal{N}}{4\pi} \begin{pmatrix} j_0(xu'/R_B) \\ i\beta_q \vec{\sigma} \cdot \hat{u}' j_1(xu'/R_B) \end{pmatrix} \chi_m$$

Lower component enhanced by attractive scalar field

$$\beta_q = \sqrt{\frac{\Omega_0 - m_q^* R_B}{\Omega_0 + m_q^* R_B}}$$

- This leads to a very small (\sim 1% at ρ_0) increase in bag radius
- It also suppresses the scalar coupling to the nucleon as the scalar field increases

$$\frac{\Omega_0/2 + m_q^* R_B(\Omega_0 - 1)}{\Omega_0(\Omega_0 - 1) + m_q^* R_B/2} = \int \overline{\Psi} \Psi dV$$

 This is the "scalar polarizability": a new saturation mechanism for nuclear matter

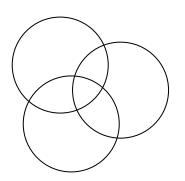
Quark-Meson Coupling Model (QMC): Role of the Scalar Polarizability of the Nucleon

The response of the nucleon internal structure to the scalar field is of great interest... and importance

$$M*(\vec{R}) = M - g_{\sigma}\sigma(\vec{R}) + \frac{d}{2}(g_{\sigma}\sigma(\vec{R}))^{2}$$

Non-linear dependence through the scalar polarizability d ~ 0.22 R in original QMC (MIT bag)

Indeed, in nuclear matter at mean-field level (e.g. QMC), this is the ONLY place the response of the internal structure of the nucleon enters.



Summary: Scalar Polarizability

Consequence of polarizability in atomic physics is many-body forces:

$$V = V_{12} + V_{23} + V_{13} + V_{123}$$

- same is true in nuclear physics:
- scalar polarizability is natural source of 3-body force

Finite nuclei

Derivation of Density Dependent Effective Force

Physical origin of density dependent forces of Skyrme type within the quark meson coupling model

P.A.M. Guichon ^{a,*}, H.H. Matevosyan ^{b,c}, N. Sandulescu ^{a,d,e}, A.W. Thomas ^b

Nuclear Physics A 772 (2006) 1–19

- Start with classical theory of MIT-bag nucleons with structure modified in medium to give M_{eff} (σ).
- Quantise nucleon motion (non-relativistic), expand in powers of derivatives
- Derive equivalent, local energy functional:

$$\langle H(\vec{r})\rangle = \rho M + \frac{\tau}{2M} + \mathcal{H}_0 + \mathcal{H}_3 + \mathcal{H}_{eff} + \mathcal{H}_{fin} + \mathcal{H}_{so}$$

Derivation of effective Force (cont.)

$$\mathcal{H}_{0} + \mathcal{H}_{3} = \rho^{2} \left[\frac{-3G_{\rho}}{32} + \frac{G_{\sigma}}{8(1 + d\rho G_{\sigma})^{3}} - \frac{G_{\sigma}}{2(1 + d\rho G_{\sigma})} + \frac{3G_{\omega}}{8} \right] + (\rho_{n} - \rho_{p})^{2} \left[\frac{5G_{\rho}}{32} + \frac{G_{\sigma}}{8(1 + d\rho G_{\sigma})^{3}} - \frac{G_{\omega}}{8} \right],$$

$$\mathcal{H}_{\text{eff}} = \left[\left(\frac{G_{\rho}}{8m_{\rho}^{2}} - \frac{G_{\sigma}}{2m_{\sigma}^{2}} + \frac{G_{\omega}}{2m_{\omega}^{2}} + \frac{G_{\sigma}}{4M_{N}^{2}} \right) \rho_{n} + \left(\frac{G_{\rho}}{4m_{\rho}^{2}} + \frac{G_{\sigma}}{2M_{N}^{2}} \right) \rho_{p} \right] \tau_{n} + p \leftrightarrow n,$$

$$\begin{split} \mathcal{H}_{\text{fin}} = & \left[\left(\frac{3G_{\rho}}{32m_{\rho}^{2}} - \frac{3G_{\sigma}}{8m_{\sigma}^{2}} + \frac{3G_{\omega}}{8m_{\omega}^{2}} - \frac{G_{\sigma}}{8M_{N}^{2}} \right) \rho_{n} \right. \\ & \left. + \left(\frac{-3G_{\rho}}{16m_{\rho}^{2}} - \frac{G_{\sigma}}{2m_{\sigma}^{2}} + \frac{G_{\omega}}{2m_{\omega}^{2}} - \frac{G_{\sigma}}{4M_{N}^{2}} \right) \rho_{p} \right] \nabla^{2}(\rho_{n}) + p \leftrightarrow n, \end{split}$$

$$\mathcal{H}_{\text{SO}} = \nabla \cdot J_n \left[\left(\frac{-3G_{\sigma}}{8M_N^2} - \frac{3G_{\omega}(-1 + 2\mu_s)}{8M_N^2} - \frac{3G_{\rho}(-1 + 2\mu_v)}{32M_N^2} \right) \rho_n \right]$$

$$+ \left(\frac{-G_{\sigma}}{4M_N^2} + \frac{G_{\omega}(1 - 2\mu_s)}{4M_N^2} \right) \rho_p \right] + p \leftrightarrow n.$$
Spin-orbit force predicted!

Systematic Study of Finite Nuclei

Systematic approach to finite nuclei

J.R. Stone, P.A.M. Guichon, P. G. Reinhard & A.W. Thomas: (Phys Rev Lett, 116 (2016) 092501)

• Constrain 3 basic quark-meson couplings $(g_{\sigma}^{q}, g_{\omega}^{q}, g_{\rho}^{q})$ so that nuclear matter properties are reproduced within errors

$$-17 < E/A < -15 \text{ MeV} \\ 0.14 < \rho_0 < 0.18 \text{ fm}^{-3} \\ 28 < S_0 < 34 \text{ MeV} \\ L > 20 \text{ MeV} \\ 250 < K_0 < 350 \text{ MeV} \\$$

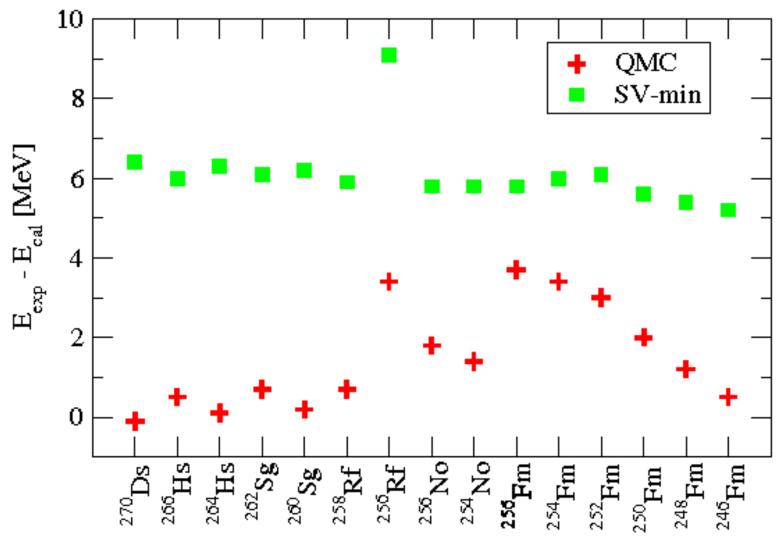
- Fix at overall best description of finite nuclei (+2 pairing pars)
- Benchmark comparison: SV-min 16 parameters (11+5)

Overview of 106 Nuclei Studied – Across Periodic Table

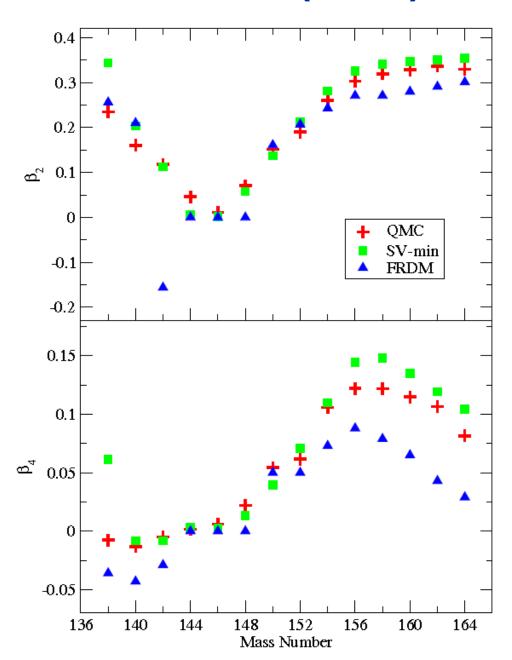
Element	Z	N	Element	Z	N
С	6	6 -16	Pb	82	116 - 132
0	8	4 -20	Pu	94	134 - 154
Ca	20	16 - 32	Fm	100	148 - 156
Ni	28	24 - 50	No	102	152 - 154
Sr	38	36 - 64	Rf	104	152 - 154
Zr	40	44 -64	Sg	106	154 - 156
Sn	50	50 - 86	Hs	108	156 - 158
Sm	62	74 - 98	Ds	110	160
Gd	64	74 -100			

N	Z	N	Z
20	10 - 24	64	36 - 58
28	12 - 32	82	46 - 72
40	22 - 40	126	76 - 92
50	28 - 50		

Overview

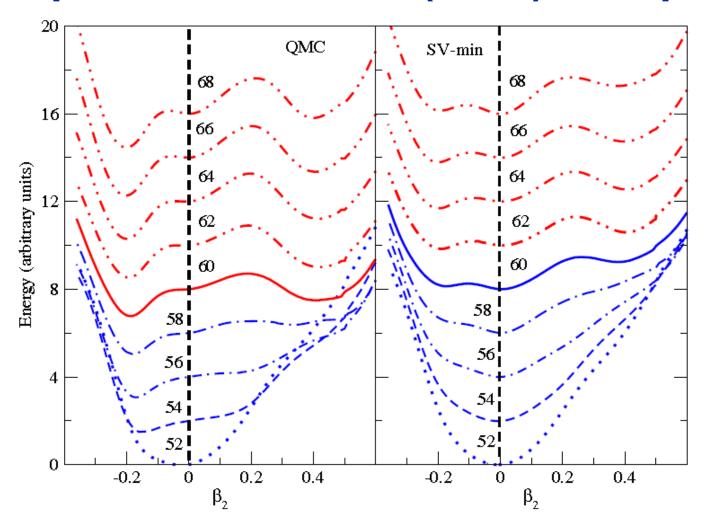

data	rms error $\%$		
	QMC	SV-min	
fit nuclei:			
binding energies	0.36	0.24	
diffraction radii	1.62	0.91	
surface thickness	10.9	2.9	
rms radii	0.71	0.52	
pairing gap (n)	57.6	17.6	
pairing gap (p)	25.3	15.5	
ls splitting: proton	15.8	18.5	
ls splitting: neutron	20.3	16.3	
superheavy nuclei:	0.1	0.3	
N=Z nuclei	1.17	0.75	
mirror nuclei	1.50	1.00	
other	0.35	0.26	

Superheavies: 0.1% accuracy

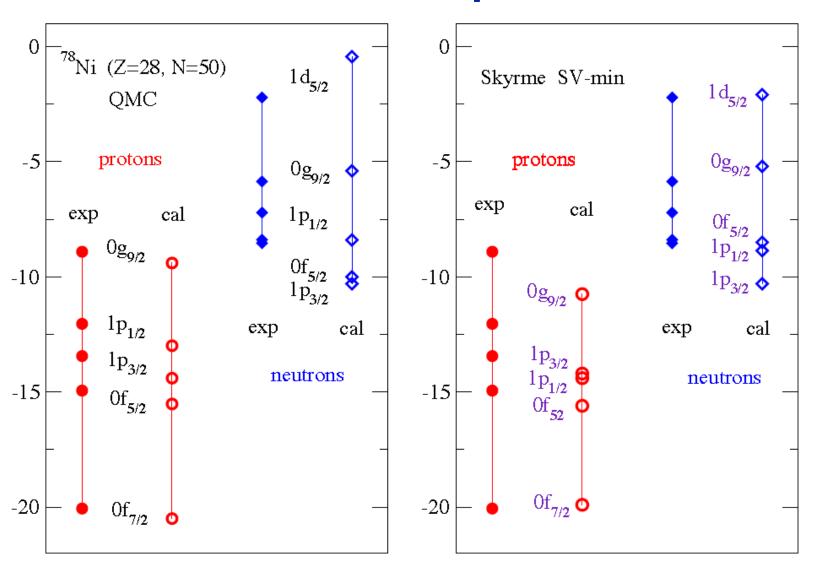


Deformation in Gd (Z=64) Isotopes

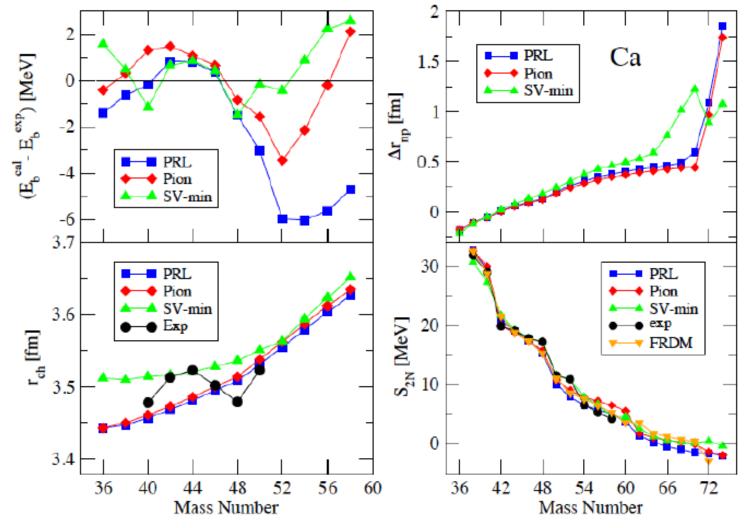
Spin-orbit splitting


Element		States	Exp [keV]	QMC [keV]	SV-bas [keV]
016	proton	1p _{1/2} - 1p _{3/2}	6.3 (1.3)a)	5.8	5.0
	neutron	1p _{1/2} - 1p _{3/2}	6.1 (1.2)a)	5.7	5.1
Ca40	proton	1d _{3/2} - 1d _{5/2}	7.2 b)	6.3	5.7
	neutron	1d _{3/2} - 1d _{5/2}	6.3 b)	6.3	5.8
Ca48	proton	1d _{3/2} - 1d _{5/2}	4.3 b)	6.3	5.2
	neutron	1d _{3/2} - 1d _{5/2}		5.3	5.2
Sn132	proton	2p _{1/2} - 2p _{3/2}	1.35(27)a)	1.32	1.22
	neutron	2p _{1/2} - 2p _{3/2}	1.65(13) ^{a)}	1.47	1.63
	neutron	2d _{3/2} - 2d _{5/2}		2.71	2.11
Pb208	proton	2p _{1/2} - 2p _{3/2}		0.91	0.93
	neutron	$3p_{1/2} - 3p_{3/2}$	0.90(18) ^{a)}	1.11	0.89

Shape evolution of Zr (Z=40) Isotopes

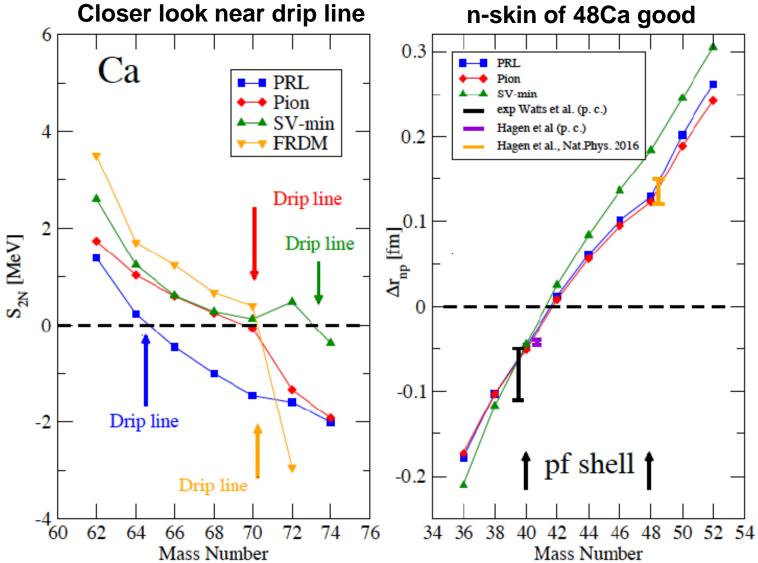

- Shape co-existence sets in at N=60 Sotty et al., PRL115 (2015)172501
- Usually difficult to describe
 - e.g. Mei et al., PRC85, 034321 (2012)

"Hot off the press"

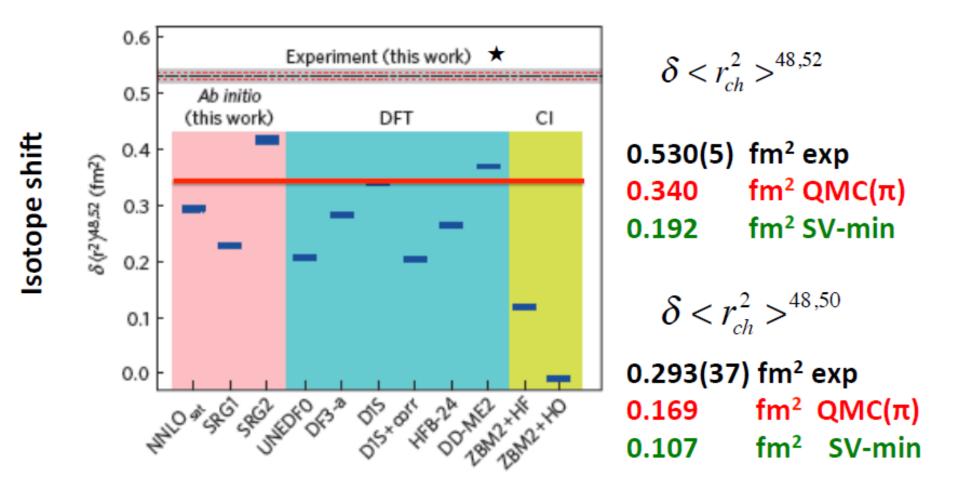


Addition of pion – effect in Ca region

Pion Fock term does improve binding away from stability



More on addition of pion



Sudden size increase above ⁴⁸Ca

★ Garcia Ruiz et al., Nat. Phys. 12, 594 (2016)

Summary: Finite Nuclei

- The effective force was derived at the quark level based upon changing structure of bound nucleon
- Has many less parameters but reproduces nuclear properties at a level comparable with the best phenomenological Skyrme forces
- Looks like standard nuclear force
- BUT underlying theory also predicts modified internal structure and hence modified
 - DIS structure functions
 - elastic form factors.....

Nuclear DIS Structure Functions

To address questions like this one MUST start with a theory that quantitatively describes nuclear structure – very, very few examples.....

EMC Calculations for Finite Nuclei

(Spin dependent EMC effect TWICE as large as unpolarized)

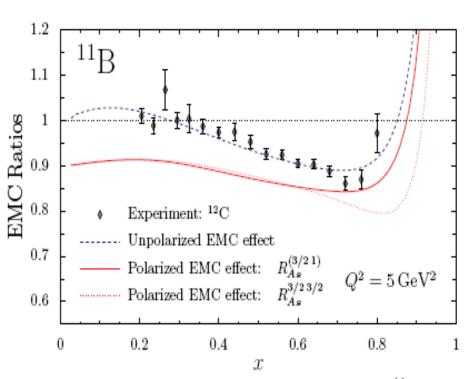


FIG. 7: The EMC and polarized EMC effect in ¹¹B. The empirical data is from Ref. [31].

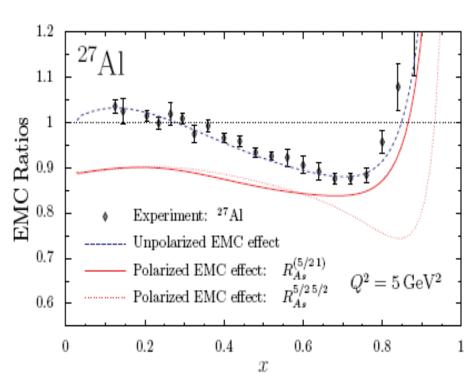
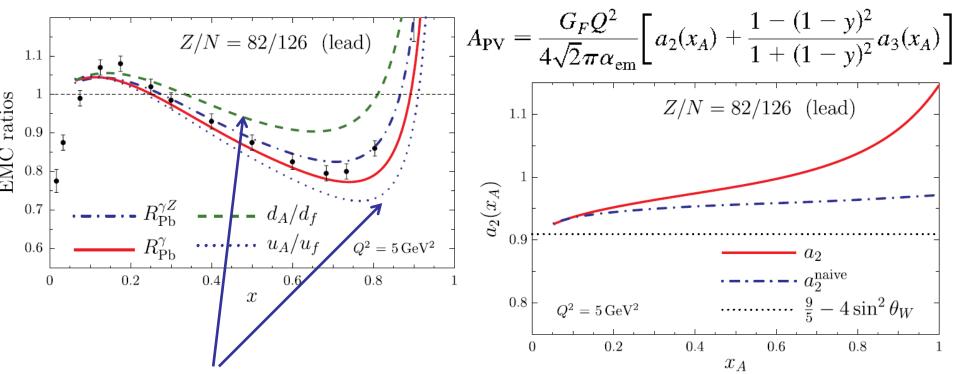


FIG. 9: The EMC and polarized EMC effect in ²⁷Al. The empirical data is from Ref. [31].

Cloët, Bentz & Thomas, Phys. Lett. B642 (2006) 210 (nucl-th/0605061) SPECIAL RESEARCH

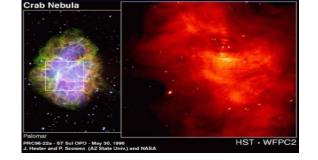


PRL **109**, 182301 (2012)

Parity-Violating Deep Inelastic Scattering and the Flavor Dependence of the EMC Effect

I. C. Cloët, W. Bentz, and A. W. Thomas

Ideally tested at EIC with CC reactions



Parity violating EMC will test this at JLab 12 GeV

Summary

- Intermediate range NN attraction is STRONG Lorentz scalar
- This modifies the intrinsic structure of the bound nucleon
 - profound change in shell model :
 what occupies shell model states are NOT free nucleons
- Scalar polarizability is a natural source of three-body force/ density dependence of effective forces
 - clear physical interpretation
- Derived, density-dependent effective force gives results better than most phenomenological Skyrme forces

Summary

- Initial systematic study of finite nuclei very promising
 - Binding energies typically within 0.3% across periodic table
- Super-heavies (Z > 100) especially good (average difference 0.1%)
- Deformation, spin-orbit splitting and charge distributions all look good)
- BUT need empirical confirmation:
 - Response Functions & Coulomb sum rule (soon)
 - Isovector EMC effect; spin EMC
 - Your idea here.....

Special Mentions.....

Tsushima

Saito

Stone

Cloët

Whittenbury

Key papers on QMC

- Two major, recent papers:
 - 1. Guichon, Matevosyan, Sandulescu, Thomas, Nucl. Phys. A772 (2006) 1.
 - 2. Guichon and Thomas, Phys. Rev. Lett. 93 (2004) 132502
- Built on earlier work on QMC: e.g.
 - 3. Guichon, Phys. Lett. B200 (1988) 235
 - 4. Guichon, Saito, Rodionov, Thomas, Nucl. Phys. A601 (1996) 349
- Major review of applications of QMC to many nuclear systems:
 - 5. Saito, Tsushima, Thomas, Prog. Part. Nucl. Phys. 58 (2007) 1-167 (hep-ph/0506314)

References to: Covariant Version of QMC

- Basic Model: (Covariant, chiral, confining version of NJL)
- •Bentz & Thomas, Nucl. Phys. A696 (2001) 138
- Bentz, Horikawa, Ishii, Thomas, Nucl. Phys. A720 (2003) 95
- Applications to DIS:
- Cloet, Bentz, Thomas, Phys. Rev. Lett. 95 (2005) 052302
- Cloet, Bentz, Thomas, Phys. Lett. B642 (2006) 210
- Applications to neutron stars including SQM:
- Lawley, Bentz, Thomas, Phys. Lett. B632 (2006) 495

Lawley, Bentz, Thomas, J. Phys. G32 (2006) 667

Most recent studies

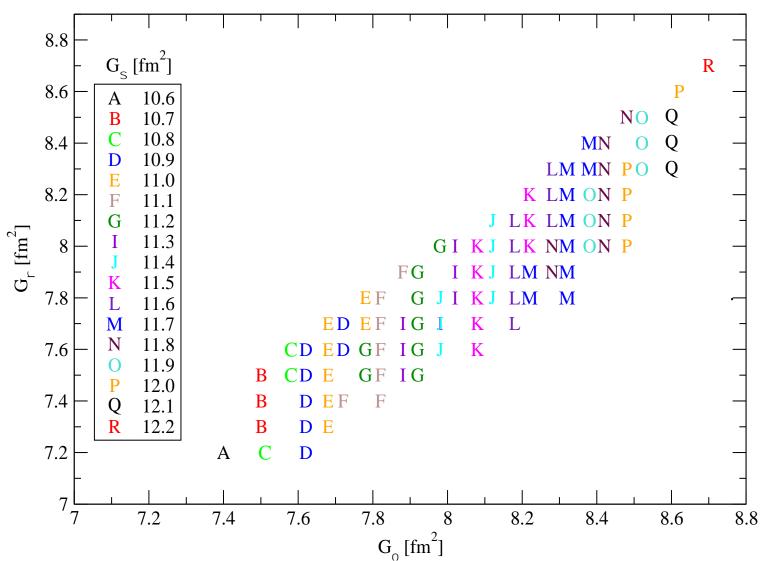
- Whittenbury, Carrillo-Serrano & Thomas, arXiv: 1606.03158
- Whittenbury, Matevosyan & Thomas, Phys. Rev. C93 (2016) 035807
- Whittenbury, Carroll, Thomas, Tsushima and Stone, Phys. Rev. C89 (2014) 065801

Can we Measure Scalar Polarizability in Lattice QCD?

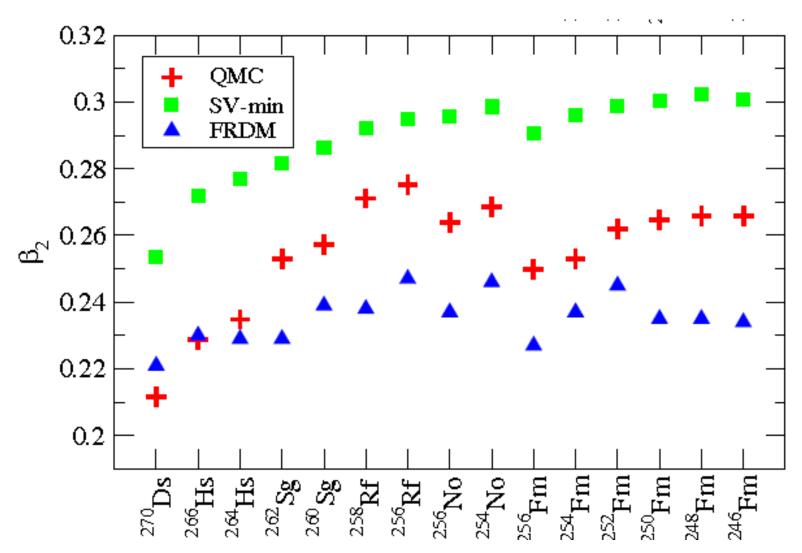
 IF we can, then in a real sense we would be linking nuclear structure to QCD itself, because scalar polarizability is sufficient in simplest, relativistic mean field theory to produce saturation

- Initial ideas on this published:
 the trick is to apply a <u>chiral invariant</u> scalar field
 - do indeed find polarizability opposing applied σ field

18th Nishinomiya Symposium: nucl-th/0411014


- published in Prog. Theor. Phys.

Constraints from nuclear matter



Quadrupole Deformation of Superheavies

