Search for reaction dynamical effects in ¹⁰He

National Science Foundation Michigan State University

L. V. Grigorenko and M. V. Zhukov, Phys. Rev. C77 (2008) 034611

Discrepancy in ¹⁰He resonance energy

Source size effect

National Science Foundation Michigan State University

L. V. Grigorenko and M. V. Zhukov, Phys. Rev. C77 (2008) 034611

Be(¹⁴Be,⁸He+2n)

National Science Foundation Michigan State University

Z. Kohley et al., Phys. Rev. Lett. 109 (2012) 232501

6

E_{decay} (MeV)

8

9

10

$2p2n \text{ or } \alpha \text{ removal}$?

Sharov *et al.* did not take detector response into account

"Direct" α -removal does not describe the data

National Science Foundation Michigan State University

P.G. Sharov, I.A. Egorova, and L.V. Grigorenko, Phys. Rev. C90 (2014) 024610

Evidence for α removal

Data could be fitted with no 4n contributions from ¹²He.

National Science Foundation Michigan State University

M.D. Jones et al., Phys. Rev. C91 (2015) 044312

No evidence for narrow resonance in ¹²He

National Science Foundation Michigan State University

M.D. Jones et al., Phys. Rev. C91 (2015) 044312

Missing mass spectroscopy of ¹⁰He

Data agree with ¹¹Li(-p) and ¹⁴Be(-2p2n) results

National Science Foundation Michigan State University

A. Matta et al., Phys. Rev. C92 (2015) 041302

New NSCL Coupled Cyclotron Experiment

¹¹ B	¹² B	¹³ B	¹⁴ B	¹⁵ B
¹⁰ Be	¹¹ Be	¹² Be	¹³ Be	¹⁴ Be
⁹ Li	¹⁰ Li	¹¹ Li	¹² Li	¹³ Li
⁸ He	⁹ He	¹⁰ He		

Invariant mass spectroscopy with MoNA

¹⁰He Neutron Energy Spectra

Preliminary data: Other observables

Preliminary data: ¹⁰He Decay Energy Spectra

Preliminary data: ¹¹Li-p -> ⁸He + 2n

P.G. Sharov, I.A. Egorova, and L.V.

Speculation:

Indications for reaction dynamical effects of the initial halo state

Preliminary data: ¹³B-3p \rightarrow ⁸He + 2n

Conclusions

- Two-neutron decay spectroscopy of ¹⁰He was performed with incident ¹¹Li and ¹³B beams.
- The preliminary decay energy spectra from the halo (¹¹Li) and nonhalo (¹³B) beams exhibit significant difference indicating reaction dynamical effects.
- The apparent resonance energy for the ¹¹Li data is shifted to a lower energy indicating the influence of the initial halo state.

Acknowledgements

MoNA Collaboration:

Augustana College, IL Central Michigan University, MI Concordia College, MN Gettysburg College, PA Hampton University, VA Hope College, MI Indiana University South Bend, IN Michigan State University, MI Ohio Wesleyan University, OH Wabash College, IN Westmont College, CA

MSU Graduate students: Han Liu Thomas Redpath

