I. Introduction

Some important problems in compact star physics, related to modern nuclear physics:

- Origin of the strong magnetic fields in pulsars and magnetars
- Massive neutron stars beyond $2M_{\text{Sun}}$
- Possible existence of quark stars

One may give answers to these problems from the microscopic viewpoint.

- EOS at supranuclear density
- Nucleon, hyperon or quark degree of freedom?
We consider a possibility of massive neutron stars beyond two solar mass

- Possibility of third family of compact stars

\[\text{WD} \rightarrow \text{NS} \rightarrow \text{3rd family?} \]

2.01 ± 0.04 \(M_{\odot} \) (PSR J0348+0432)

G. Baym, Lecture notes (NORDITA, 1977)

\[\frac{dM}{d\rho_c} < 0 \]

Gravitationally unstable

Large stiffening effect on EOS in the core is needed to support such massive and dense stars!

There are many studies about these issues.

Some important ingredients

Hyperon degree of freedom
Quark degree of freedom

Naïve thinking may lead us to the softening of EOS due to the phase transition, without any additional mechanism such as repulsive three-body force among hadrons or repulsive interaction between quarks.

We consider here the effect of strong magnetic field on EOS

\[B_{\text{surface}} \sim 10^{12-13} G \]
\[\sim 10^{14-15} G \]

(Radio Pulsars)
(Magnetars)

Much stronger field has been suggested inside the star (D. Lai, S.L. Shapiro, Ap.J. 383 (1991) 745)
II. Model

Almost free quark matter
Strong magnetic field
in the core region

Many studies of EOS with the magnetic field

Landau quantization

\[E(n, k_z) = \sqrt{k_z^2 + \left(\sqrt{m_q^2 + 2\nu |qB| - s\mu_N\kappa B} \right)^2} : \text{Landau levels} \]

\[\nu = n + 1/2 - \text{sign}(q)s/2, \kappa : \text{anomalous magnetic moment} \]

\[\psi_{n,k_z}(r) : \text{Hermite polynomial (localization) in } x-y \text{ plane} \]

\[e^{ik_zz} \text{ along } z \text{ axis} \]

Quarks produce one-dim. Fermi sea for each Landau level \(n \)

Remarks:

- All quarks are charged \(\quad \leftrightarrow \quad \) Neutrons are neutral
- Mass is very small, compared with \(\sqrt{qB} \quad m_q \approx 0 \ll M_n \)

Similar idea has been applied for white dwarfs,

Super-Chandrasekhar-mass WD

B. Mukhopadhyay et al.,
arXiv:1507.05439;1509.00936

\[z \]

\[B \]
\(B > B_c \sim O(10^{19} \, G) \)

only LLL is occupied.

Number density
\[
n_f = \frac{3 |e_f B|}{2\pi^2} p_{fF}^3
\]

Energy density
\[
\varepsilon_f = \frac{3 |e_f B|}{4\pi^2} p_{fF}^2
\]

EOS for quark matter
(MIT bag model)
\[
\varepsilon = \frac{5\pi^2}{2eB} n_B^2, \quad n_B = \sum f n_f
\]
\[
P = n_B^2 \frac{\partial(\varepsilon / n_B)}{\partial n_B} = \frac{5\pi^2}{2eB} n_B^2 - B_{bag}
\]
\[= \varepsilon - 2B_{bag}\]

\((B \text{ independent!}) \)

\(\mu_B, \sqrt{eB} \sim O(\text{several hundred MeV}) \)
Some specific features of our EOS

(i) It gives the “stiffest” one

\[c_s^2 = \frac{dP}{d\varepsilon} = 1 \quad \text{(Causality limit)} \]

\[\rightarrow 1/3 \quad \text{(ultra-relativistic gas)} \quad (B \rightarrow 0) \]

cf Massive vector interaction also realizes the causality limit \(\varepsilon \propto n_B^2 \)

(Ya.B. Zeldovich, Sov. Phys. JETP 14, 1143 (1962))

(ii) It is independent of B for B>Bc

\(\varepsilon_0 \sim 2.8 \times 10^{14} \text{ g cm}^{-3} \)

A) \(B_{\text{bag}}=237.3 \text{ MeV/fm}^3 \)

B) \(B_{\text{bag}}=160.9 \text{ MeV/fm}^3 \)

C) \(B_{\text{bag}}=192.8 \text{ MeV/fm}^3 \)

NJL model

T. Kojo et al., PRD 91, 045003 (2015))
Hybrid quark stars

- Recall that the adiabatic index must satisfy the relation,

\[\gamma_{ad} > \frac{4}{3} + \kappa \frac{M}{R}, \kappa \sim O(1) \]

for the stability condition.

(Shapiro and Teukolsky, 1983)

\[\gamma_{ad} \sim 2 \]

in our EOS.

- Virial theorem is cleared.

In case \(M = 2M_{\odot} \) is a hybrid quark star, \(R_Q/R \) is around 0.8.
III Possibility of the third family of compact stars

However, it is impossible to make the massive stars beyond $2M_{\text{Sun}}$ due to the softening of EOS by the phase transition. There has been discussed a possibility by the phase transition to pion, hyperon or quark matter. One result

$\frac{dM}{dR} < 0$

J. Schaffner-Bielich et al., PRL89, 171101 (2002)

U.H. Gerlach, PR 172, 1325 (1968)

There has been discussed a possibility by the phase transition to pion, hyperon or quark matter. However, it is impossible to make the massive stars beyond $2M_{\text{Sun}}$ due to the softening of EOS by the phase transition.

Quark stars?

J. Schaffner-Bielich et al., PRL89, 171101 (2002)
Some conditions:
(i) H-Q transition occurs at low densities
(ii) Discontinuous jump of the adiabatic index is large.
IV. Summary and Concluding remarks

• We have discussed how the magnetic field stiffens EOS LLL gives rise to the stiffest EOS (Causality limit)

• Hybrid quark stars larger than $2M_{\text{solar}}$ is possible for $B > B_c = O(10^{19}\text{G})$
 Quark matter content should be very large for hybrid quark stars

• We have demonstrated an example of third family of compact stars
 Second collapse of supernovae
 Gravitational wave after neutron star mergers
\[T^{\mu\nu} = T_m^{\mu\nu} + T_f^{\mu\nu}, \]
\[T_m^{\mu\nu} = \varepsilon_m u^\mu u^\nu - P_m \left(g^{\mu\nu} - u^\mu u^\nu \right), \]
\[T_f^{\mu\nu} = \frac{B^2}{4\pi} \left(u^\mu u^\nu - \frac{1}{2} g^{\mu\nu} \right) - \frac{B^{\mu} B^\nu}{4\pi}. \]
\[T^{\mu\nu} = \begin{bmatrix} \varepsilon_m + \frac{B^2}{8\pi} & 0 & 0 & 0 \\ 0 & P_m + \frac{B^2}{8\pi} - MB & 0 & 0 \\ 0 & 0 & P_m + \frac{B^2}{8\pi} - MB & 0 \\ 0 & 0 & 0 & (P_m + \frac{B^2}{8\pi}) - \frac{B^2}{4\pi} \end{bmatrix} \]
Anisotropic pressure

\[T_{HV}^{\mu \nu} = \varepsilon u^{\mu} u^{\nu} - P_1 \Xi^{\mu \nu} + P_{||} b^{\mu} b^{\nu}, \quad P_1 = P - MB, P_{||} = P \]

\[T_{EM}^{\mu \nu} = \frac{1}{2} B^2 \left(u^{\mu} u^{\nu} - \Xi^{\mu \nu} - b^{\mu} b^{\nu} \right), \]

\[\Xi^{\mu \nu} = \Delta^{\mu \nu} + b^{\mu} b^{\nu}, \]

\[\Delta^{\mu \nu} = g^{\mu \nu} - u^{\mu} u^{\nu} \]

(MHD)

We assume here an isotropic pressure.

Anisotropic pressure or Deformation of star is still controversial

Pressure is isotropic due to a back reaction from matter?

(A.Y. Pothekhin and D.G. Yakovlev, PRC 85, 039801 (2012))
FIG. 7. Mass-radius curves for hybrid stars without mixed phase built with the GM1 and SU(3) HK NJL parametrizations, SLOW (left panel) and FAST (right panel) cases.

(R. Casali et al., PRC 89, 015805 (2014))

Hybrid star

RMF+NJL
Maxwell construction
Virial theorem

\[2T + W + 3\Pi + M = 0, \]
\[T > 0, \Pi > 0, W < 0 \]

\[\frac{4\pi R^3}{3} \frac{B^2_{\text{max}}}{8\pi} \sim \frac{GM^2}{R} (+\text{GR}?) \]

\[B_{\text{max}} \sim 2 \times 10^8 (\frac{M}{M_\odot})(\frac{R}{R_\odot})^{-2} G \]

White Dwarf (MHD):

\[B_{\text{surf}} \sim 10^6 - 10^8 G \]
\[B_{\text{in}} \sim 10^{12} G \]

\[B_{\text{max}} \sim 10^{18} G (\text{neutron star}) \]

\[\int d^3r \frac{B^2(r)}{8\pi} = \frac{4\pi R^3}{3} \left\langle \frac{B^2(r)}{8\pi} \right\rangle_{av} \]