Importance of tensor forces in ground state of nuclei through high-momentum nucleons

= Overview =

Isao Tanihata, H. J. Ong, S. Terashima, T. Myo, and H. Toki

¹IRCNPC and SPNEE, Beihang University, Beijing, China ²RCNP, Osaka University, Osaka, Japan ³Osaka Institute of Technology, Osaka, Japan

The importance of tensor is clear in deuteron

S=1 and L=0 or 2 Binding of deuteron (1^+)

- Tensor interactions provides most of the biding energy.
 It is due to the D-wave mixing through the tensor interactions
- 3. The binding energy by tensor interactions are not from D² term but from SD cross term.
- 4. D wave has shorter range and thus has high-momentum.
- 5. High momentum nucleon are necessary to make binding.

P(D)	5.78 [%]	and the second sec
Radius	1.96 [fm]	
(SS)	2.00 [fm] 🗛	· · · · · · · · · · · · · · · · · · ·
(DD)	1.22 [fm] –	
K.Ikeda, T.Mvo.	K.Kato.and H.Toki	

Lecture Notes in Phys.818(2010) 165.

A simple view of the effect of tensor forces

Example in ⁴He

The selection rules $\Delta L=2, \Delta S=2$ p-n pair: yes n-n, p-p pair: no

and this mixed state includes high-momentum nucleons

	H-J	
Energy	-20.6	
Kin. E	131.1	
Pot. E	-151.7	
_ ¹E	-51.3	
C ³ E	-26.2	
_10+30	-0.4	
т ³ Е	-69.7	
³ O	-0.5	
LS+QLS	-3.6	
P(D)%	12.8	

M. Sakai, I. Shimodaya, Y. Akaishi, J. Hiura, and H. Tanaka, Prog. Theor. Phys. 56(1974)32.

Importance of tensor forces in nuclear structure

Change of single particle orbitals

Change of magic numbers in nuclear far from the stability line

T. Otsuka, T. Suzuki, R. Fujimoto, H. Grawe and Y. Akashi, Phys. Rev. Lett. **95** (2005) 232502.

Other known effects related to 2p-2h configuration by tensor forces

- Deviation of scaler magnetic moments (or <σz>) of doubly closed shell±1 from Schmidt values.
 - » H. Hyuga, A. Arima, and K. Shimizu, Null. Phys. A <u>336 (1980)</u> 363.

Mixing of (S_{1/2})² and (p_{1/2})² in ¹¹Li halo
 T. Myo, K. Kato, H. Toki, K. Ikeda, Phys. Rev. <u>76</u> (2007) 024305.

Isoscalar moments need other explanations Arima 1985.

- If a nucleon-nucleon interaction is central, the total spin is a constant of motion.
- The expectation value of spin in nuclei with and LS-closed shell ±one nucleon are then the same as their Schmidt values, irrespective of the degree of configuration mixing.
- In order to modify the values, one has to have non-central interaction.
- Pion exchange potential include a strong tensor force.

 $\Delta L=2, \Delta S=2$ p-n pair: yes n-n, p-p pair: no

Second order calculation up to 12ħω

• H. Hyuga, A, Arima, and K. Shimizu (Nucl. Phys. A 336 (1980) 363.

Table 2

Isoscalar spin operator

A	Orbit	Schmidt value	δ(S)(exp)/(S) (%)
15	P10	-0.1667	-49.4
17	d _{sp}	0.5	-13.6
39	d ₃₀	-0.3	- 61.9
41	f _{7/2}	0.5	- 11.9

Table 4

Contribution coming from the second-order configuration mixing

A	Orbit	δ (S)/(S) (H.J.) ^[6] (%)	$\delta \langle S \rangle / \langle S \rangle$ (Paris) (%)	
15	P10	-63	-57	
17	d ₅₀	- 18	-17	
39	d ₃₀	-55	-56	
41	f _{7/2}	-19	-23	

s- and p- waves mixing in ¹¹Li

• Momentum distribution of fragments ¹⁰Li

- Equal amount of p_{1/2} and s_{1/2}. (Simon 1999)
- Beta-decay
 - 30-40% s1/2 wave and small amount of p1/2 (Borge 1997)

two-neutron transfer reaction

- (¹¹Li+p --> ⁹Li+t)
- 31-45% s1/2 and p1/2
- (2008)

I. Tanihata et al., Phys. Rev. Lett 100 (2008) 192502..

Lecture CNS summer school 2011

Tensor Optimized Shell Model (TOSM)

Myo, Toki, Ikeda, Kato, Sugimoto, PTP 117 (2006)

 $\Delta L=2, \Delta S=2$ p-n pair: yes n-n, p-p pair: no

0p-0h + 2p-2h

$$\Phi(^{4}\text{He}) = \Sigma_{i} C_{i} \psi_{i}(\{b_{\alpha}\}) = C_{1} (0s)^{4} + C_{2} (0s)^{2} (\overline{0p_{1/2}})^{2} + \cdots$$

size parameter: $b_{0s} \neq b_{\overline{0p}}$

۸

$$H = \sum_{i=1}^{A} t_i - T_{\mathsf{G}} + \sum_{i < j}^{A} v_{ij}, \qquad v_{ij} = v_{ij}^{\mathsf{C}} + v_{ij}^{\mathsf{T}} + v_{ij}^{\mathsf{LS}} + v_{ij}^{\mathsf{Clmb}},$$

$$\delta \frac{\langle \Phi | H | \Phi \rangle}{\langle \Phi | \Phi \rangle} = 0 \qquad \Rightarrow \quad \frac{\partial \langle H - E \rangle}{\partial b_{\alpha}} = 0 , \quad \frac{\partial \langle H - E \rangle}{\partial C_i} = 0.$$

EMMI Workshop Feb. 3-7, 2014 @GSI, Darmstadt

Mixing of S_{1/2} and p_{1/2} in ¹¹Li

T. Myo, K. Kato, H. Toki, K. Ikeda, Phys. Rev. <u>76</u> (2007) 024305.

EMMI Workshop Feb. 3-7, 2014 @GSI, Darmstadt

HIGH-MOMENTUM COMPONENTS (THEORETICAL PREDICTIONS)

T. Neff and H. Feldmeier, NPA713, 311(2003)

W. Horiuchi and Y. Suzuki, PRC76, 024311(2007)

Look for the high-momentum components by (p,d) reaction

¹⁶O(p,d)¹⁵O at high-momentum transfer (high energy)
 Use the neutron pick up reaction at large momentum transfer.

Reaction at "backward" occurs by the highmomentum component in deuteron.

160 and (p,d) reaction

160 and (p,d) reaction

Recent studies of an observation of highmomentum components in ¹⁶O will be presented in the following talk by H. J. Ong

¹⁶O(p,pd)¹⁴N

A measurement of correlated pn pairs in nuclei with large relative momenta.

T of residual nuclei = T of "d"

T of residual nuclei = 0 or 1 : independent from T of "d"

The first result of an isospin character of highmomentum pn pair will be presented in the talk by S. Terashima

So effect of tensor forces..

Present aims are;

- 1. To observe the high momentum component in the ground state of a nucleus in specific states,
- 2. To see whether this high-momentum component is associated with the tensor forces, (selection rules)
- **3.** To study the details of nucleon correlations that produce highmomentum component,
- **4.** To search for other effects of tensor interactions in nuclei.

Do not forget that the tensor force is an important origin of *l*•*s* force!

Necessities of tensor forces are presented in structure of nuclear ground states.
 Recent studies show the effects of high-momentum neutrons in the ground state of ¹⁶O by (p,d) and (p,pd) reactions.

Tensor effects are strongly state dependent. It affects not only in the way just reduce the shell model components by 10~20% everywhere but the effect would be strongly state dependent. Also the binding energy may change suddenly due to the availability of orbitals.

Thank you for your attention and continuing attention to the following talks.