Search for Double Gamow-Teller Giant Resonance via

Heavy-Ion Double Charge Exchange Reaction

Motonobu Takaki (Center for Nuclear Study, Univ. of Tokyo)

Double Gamow-Teller resonance

Double Gamow-Teller resonance (DGTR) consists of two GT resonances induced by the spin-isospin operator, $\sigma\tau\sigma\tau$.

Through the DGTR study, we would like to answer.

 Is the DGTR just superposition of the GTRs, or, do the nuclear (spin-dependent) correlations cause further changes to structure and responses of double GT states?

DGTR can be another benchmark for nuclear structure calculation of ^{ββ}-decays.

- The calculation only rely on the $2\nu\beta\beta$ results.

A unique calibration of nuclear structure calculation for the $\beta\beta$ -decay.

The ($\beta\beta$ -decay) matrix element, however, still remains very small and accounts for only a 10^{-4} to 10^{-3} of the total DGT sum rule. A precise calculation of such hindered transition is, of course, very difficult and is inherently a subject of large percent uncertainties. At present there is no direct way to "calibrate" such complicated nuclear structure calculations involving miniature fractions of the two-body DGT transitions. By studying the stronger DGT transitions and, in particular, the giant DGT states experimentally and as we do here, theoretically, one may be able to "calibrate" the calculations of $\beta\beta$ -decay nuclear elements.

N. Auerbach, L. Zamick, and D. Zheng, Annals of Physics 192, 77 (1989).

DGTR has been left to be discovered!

DGTR

Limitation of experimental access to DGT

DGT: $\Delta L=0$, $\Delta S=0$ or 2, $\Delta T_z=2$

Spin and Isospin flips is necessary. Heavy-ion double charge exchange (HIDCX) reaction *β-β- -type DGT probe* is effective for medium or heavy mass nuclei

New idea: $({}^{12}C, {}^{12}Be(0+_2))$ reaction

$^{12}C(gnd) \rightarrow ^{12}Be(0_2^+)$ transition is strong. $B(GT^2) \sim 0.3$

 $^{12}C(^{18}O,^{18}Ne)$ experiment \rightarrow

Matsubara, Uesaka, MT et al., Few-Body Syst. 54, 1433 (2013).

 This is because all of the initial ¹²C(0⁺g.s.), intermediate ¹²B(1⁺g.s.) and final ¹²Be(0⁺₂) state are dominated by 0ħω configuration.

Delayed-y tagging enables clear event identification.

- $\tau(^{12}\text{Be}(0_2^+)) = 331 \text{ ns}$ \gg TOF ~ 150 ns (Grand Raiden)
- ~ 70% of the ${}^{12}Be(0{}^{+}_{2})$ state can survive and reach the focal plane.

Those two characteristics make this reaction specially effective in DGT studies.

First application: ⁴⁸Ca(¹²C,¹²Be(0⁺₂)) experiment

3.169

Experimental setup

Identification of ¹²Be

Identification of ¹²Be(0⁺₂) with y-ray tagging

Preliminary Results: Excitation energy spectra

comparison with (π+,π) spectrum

Summary

Double Gamow-Teller Resonances will open the research opportunity on GTR×GTR correlation.

Experimental access has been limited.

New idea: $({}^{12}C, {}^{12}Be(0+_2))$ reaction

In near future, we will achieve higher statistics with a new experiment at RIBF. to other ββ-decay nuclei (⁷⁶Ge, ¹⁰⁰Mo, ¹¹⁶Cd, ¹³⁰Te ...)

can serve as another test bench of nuclear models relevant to $\beta\beta$ -decay.

- We started with ⁴⁸Ca(¹²C,¹²Be(0⁺₂)) reaction @ 100 MeV/nucleon.
- We found strengths which not appear in ${}^{48}Ca(\pi^+,\pi){}^{48}Ti$ reaction.
- The analysis to confirm the DGT strength in ⁴⁸Ti is in progress.

Collaborators

CNS, Tokyo

RCNP, Osaka

Kyoto

Miyazaki

- S. Shimoura, M. Dozono, M. Kobayashi, K. Yako,
- S. Michimasa, S. Ota, M. Matsushita, S. Kawase, H. Tokieda, Y. Kubota, C.S. Lee, R. Yokoyama, H. Matsubara
- RIKEN Nishina Center T. Uesaka, K. Kisamori, M. Sasano, L. Stuhl, J. Zenihiro
 - A. Tamii, C. Iwamoto, Y. Matsuda, N. Aoi
 - T. Kawabata, T. Furuno, M. Tsumura
 - Y. Maeda, S. Gotanda, S. Yamamoto

Comparison with Shell mode calculation

Code: Oxbash GXPF1a interaction

2n -> 2p (in f-shell)

(στ)² spectrum in ⁴⁸Ti

Accidental coincidence evaluation

2vββ decays: One of the Double Gamow-Teller

TABLE 1 Summary of experimentally measured $\beta\beta(2\nu)$ half-lives and matrix elements^a

Isotope	$T_{1/2}^{2\nu}(y)$	References	$M_{\rm GT}^{2\nu}~({ m MeV^{-1}})$
⁴⁸ Ca	$(4.2 \pm 1.2) \times 10^{19}$	(55, 56)	0.05
⁷⁶ Ge	$(1.3 \pm 0.1) \times 10^{21}$	(57–59)	0.15
⁸² Se	$(9.2 \pm 1.0) \times 10^{19}$	(60, 61)	0.10
$^{96}Zr^{\dagger}$	$(1.4^{+3.5}_{-0.5}) \times 10^{19}$	(62-64)	0.12
¹⁰⁰ Mo	$(8.0 \pm 0.6) \times 10^{18}$	(65–70), (71) [†]	0.22
¹¹⁶ Cd	$(3.2 \pm 0.3) \times 10^{19}$	(72–74)	0.12
¹²⁸ Te ^b	$(7.2 \pm 0.3) \times 10^{24}$	(75, 76)	0.025
¹³⁰ Te ^c	$(2.7 \pm 0.1) \times 10^{21}$	(75)	0.017
¹³⁶ Xe	>8.1 × 10 ²⁰ (90% CL)	(77)	<0.03
150 Nd [†]	$7.0^{+11.8}_{-0.3} \times 10^{18}$	(68, 78)	0.07
238Ud	$(2.0 \pm 0.6) \times 10^{21}$	(79)	0.05 Eliota

A unique calibration of nuclear structure calculation for the $\beta\beta$ -decay.

The ($\beta\beta$ -decay) matrix element, however, still remains very small and accounts for only a 10^{-4} to 10^{-3} of the total DGT sum rule. A precise calculation of such hindered transition is, of course, very difficult and is inherently a subject of large percent uncertainties. At present there is no direct way to "calibrate" such complicated nuclear structure calculations involving miniature fractions of the two-body DGT transitions. By studying the stronger DGT transitions and, in particular, the giant DGT states experimentally and as we do here, theoretically, one may be able to "calibrate" the calculations of $\beta\beta$ -decay nuclear elements.

N. Auerbach, L. Zamick, and D. Zheng, Annals of Physics 192, 77 (1989).

Single charge exchange reaction on ⁴⁸Ca

 ${}^{48}\text{Ca}(p, n){}^{48}\text{Sc}$ (left-hand panel) and ${}^{48}\text{Ti}(n, p){}^{48}\text{Sc}$ (right-hand panel) reactions. The histograms show the MD analysis results.

 48 Ca(p,n) : Yako et al., PRL **103**, 012503 (2009)

FIG. 1 (color). Double-differential cross sections for the

Go beyond and more effective

Love & Franey

