Beam Thermalization at The National Superconducting Cyclotron Laboratory

Chandana Sumithrarachchi

K. Cooper, D.J. Morrissey, G. Savard, S. Schwarz, A.C.C. Villari

Outline

Introduction to beam thermalization at NSCL

Experimental results

Challenges and improvements

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Why Thermalized beams

Projectile Fragmentation provides wide range of very exotic nuclei at high energies without decay losses and without chemical separation.

- Study properties of exotic nuclei far from stability
- Search for driplines

Some experiments are only possible with low energy beams (0 - 100 keV).

- High precision mass measurements
- Laser spectroscopy (Charge radii, nuclear moments)
- Nuclear astrophysics experiments (Safe coulomb excitation, transfer reactions)

Scheme for Thermalization of Projectile Fragmentation

Processes inside the gas catcher:

- Thermalization process produces ions an (He⁺₂)
- Form stable molecular ions from impurit gas.
- Transport of thermalized ions in the buff the interactions with molecular ions in the radioactive molecular ions. (Depends on in fragment chemistry)

Low Energy Beam Area at NSCL

A1900 fragment separator

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Beam Thermalization Facility

ANL Gas Catcher

U.S. Depa NSCL FRIB

U.S. Department of Energy Office of Science National Science Foundation Michigan State University $\frac{\text{MICHIGAN STATE}}{\text{U N I V E R S I T Y}}$

RFQ Ion Guide

Low energy beam

RFQ electrodes

- Beam cooling with He ~ eV energy beam
- Transverse confinement with RF quadrupole electric field
- Axial drag field with DC voltage gradient
- Low emittance

RFQ operates at:

- RF frequency range of 3 -4.5 MHz
- Peak-to-peak amplitude ~ < 500 V

U.S. Department of Energy Office of Science National Science Foundation Michigan State University MICHIGAN STATE

Beam Thermalization: ⁴⁰S fragment

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Beam Thermalization: ⁴⁰S fragment

Beam Thermalization: ⁴⁰S fragment

Michigan State University

FRIB

Chandana Sumithrarachchi #10

Improvement: Tunable Wedge System

Stopping efficiency can be increased by having tunable wedge system.

Tunable wedge system installed recently.

- Two fused silica wedges rotate opposite direction to get the desired angle
- Angle per wedge = 2.5 mrad; middle thickness
 = 0.5 mm; Max wedge angle = 5 mrad
- Tested with ⁷⁵Ga beam

Chemical Molecular Ions Formation with Fragments

Impurity molecules in buffer gas form molecular ions with fragments (Depends on impurity concentration & fragment chemistry).

> Reduce thermalized beam rate for low energy experiments

U.S. Department of Energy Office of Science

National Science Foundation Michigan State University

FRIB

> Apply additional voltage at RFQ

MICHIGAN STATE

Install a pump directly attached to the \geq gas catcher (Clean up purpose)

Mass distribution of ³⁷K (after clean up)

Mass distribution of ³⁷ K (before clean up)

Thermalized Beam Contaminates With Stable Ions

- Stable ions are formed during thermalization process (Depends on impurity concentration).
- Contribute to high beam current (~ 600-800 pA)
- Major issue for low rate experiments

³⁷K experiment

Stable ions mass distribution (before clean up)

- Activity identify from beta detector and slits
- > Mass analyzer resolution (R) $m/\Delta m \approx 1500$
- Some cases, stable ions can be rejected with slits

Stable ion mass distribution (after clean up)

³⁴Ar experiment

CO groups show: gas catcher become

FRIB

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Thermalization and Extraction Efficiency

To minimize the space charge effect:

- Increase nozzle diameter (0.6 mm to 1.3 mm) \geq
- Higher DC gradients (discharge limited)
- Beam pulsing \geq
- Fast extraction methods (Ion surfing on RF carpet-Future) ACGS)

e gas

Stopping volume

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Advanced Cryogenics Gas Stopper (ACGS)

Potential gradient is replaced using a travelling wave to transport ions
 Wire carpet

- Operates at liquid helium temperature (Stable ion formation is limited)
- Ion transport is not discharge limited (Can extract shorter-lived isotopes)
- ✤ High extraction efficiency

ACGS under construction

U.S. Department of Energy Office of Science National Science Foundation Michigan State University

Outlook

- Beam thermalization facility at NSCL provides beams * successfully to low energy experimental programs
- Momentum compression improves beam thermalization ** efficiency
- Challengers for beam thermalization were identified and * some of improvements were implemented
- New beam thermalization capabilities are on the way to reality soon (ACGS, Cyclotron Stopper)

ANL Gas Catcher Operation

First Beam to ANL gas catcher : Aug 2012

 Beams for LEBIT Fe-62,63,67 Co-63,64,65,68,69 Br 72 	 Beams for BECOLA Fe-51,52,53 K-35,36,37 	 Beams for ReA3 Ga-76 K-37 Ar-46
 Br-72 O-14 N-13 C-11 		 K-46 Ar-34 Ga-75
 Cl-31 Si-24 P-29 Na-21 	as Catcher experiments • Ga-76 • K-37,38,47 • P-29 • Cl-33 • S-40	Mg-29 O-14 Si-26 Br-72 Kr-73 Ar 46

٠

Ar-46

Thank you

