

Tracking the emergence of nuclear collectivity through moments and monopoles

Andrew Stuchbery & Tibor Kibédi Department of Nuclear Physics, ANU

We must consider magnetic moments and electric monopole transitions along with E2 observables to elucidate the nature and origin of nuclear collectivity

Why magnetic moments:

 $\mu = g_l l + g_s s$

 tell us how the nucleus carries its angular momentum

- are sensitive to single-particle aspects of the nuclear wavefunction
- distinguish between proton versus neutron excitations

g

g factors

We measure spin rotation

i.e. gyromagnetic ratio or "g factor"

g = magnetic moment / angular momentum

Electromagnetic observables

E2 moments & transitions:

- ✓ Quantify quadrupole collectivity
- ✓ Track evolution of collectivity
- ✓ Distinguish alternative models (possibly)
- Elucidate nature/origin of collectivity

M1 observables (g factors):

- ✓ Sensitive to microscopic structure
- ✓ Window on drivers of emergent collectivity
- $\checkmark\,$ How the nucleus carries its angular momentum

E0 transitions:

 $\checkmark\,$ Identify and quantify shape co-existence

Outline

- Microscopic origins of g(2⁺) trends
- g factors and collectivity in Cd isotopes
- g factors and collectivity in Te isotopes spanning N=82
- Monopoles: E0 transitions

Nuclear Collectivity

Stefan Frauendorf - Cranking model

Position of high-spin intruder within major shell determines systematics

Nature of Cd isotopes

Nature of nuclear collectivity

[Garrett & Wood J.Phys.G 37,064028]

Cd isotopes: energies look vibrational but E2 strengths are not – intruder configurations

1). Do nuclei vibrate? 2). If not vibrators, then what? (γ soft rotor?)

Cd controversy & g factors

Odd-A Cd isotopes: ^{111,113}Cd

What can the odd-A isotopes tell us about the collectivity of their even cores?

Weak coupling model

Odd-A Cd isotopes: ^{111,113}Cd

p-γ spectrum after Coulex

Natural Cd target

Core-coupled states are most strongly Coulomb excited

Weak coupling model

Weak coupling model

Particle-vibration model

1-3 phonons $\otimes v \ s_{1/2}, \ d_{3/2}, \ d_{5/2}, \ g_{7/2}$

$$H = H_{\rm coll} + H_{\rm s.p.} + H_{\rm int}$$

Parameter $\boldsymbol{\xi}$ determines coupling between odd nucleon and core vibration

Heyde & Brussard, NPA 104, 81 (1967) Purrington, CPC 58, 211 (1990)

g factors & PV coupling

Vibration vs Rotation

18

Vibration vs Rotation

19

PV & PR "start the same"!

Deformation: correct mixing

Quadrupole deformation mixes $s_{1/2}$ and $d_{3/2}$ orbits: brings g factors into better agreement

with experiment.

Further spectroscopy ¹¹¹Cd

5/2+ 752.81 336.16 <i>10</i> 14 <i>3</i> 410.77 <i>10</i> 37 9M1+E2-0.05 . 507.6 <i>3</i> 100 <i>5</i> 752.85 <i>10</i> 44 9 E2	${}_{3}^{\mathbf{E}_{\gamma},\mathbf{I}_{\gamma}: \text{ from } (n,n'\gamma).}$ This is the Coulomb excited state			
3/2+ 754.9 413.0 40	I_{γ} : unweighted av of Iγ/Iγ(755γ) from <u>1968Mc04</u> and <u>1975AnYZ</u> in Coul ex.			
509.4 5 50 Wrong energy	I_{γ} : from β ⁻ decay. Others: $I_{\gamma}(509\gamma)/I_{\gamma}(755\gamma)=10.6$ (³ He,2nγ), 1.8 (<u>1968Mc04</u> in Coul ex.), and 0.98 (<u>1975AnYZ</u>) in Coul ex. these values are strongly affected by γ±.			
754.9 5 100	I_{γ} : see comment for $I\gamma(509.4\gamma)$.			
NPA 109 (1968) 529	counts 700 113 11			
Energy keV Fig. 3. Energy spectrum of gamma rays in the 24 cm ³ Ge(Li) detector following Coulomb excitation of ¹¹¹ Cd with 8 MeV α-particles.	680 700 720 740 760 780 800 energy [keV]			

22

p-γ spectrum after Coulex

Further spectroscopy ¹¹¹Cd

NEW Transient-field g factor and angular correlation measurements¹¹¹Cd target</sup>

Australian

National University

Ben Coombes (ANU Honours Project). Experiment done June 2016.

Further spectroscopy ¹¹¹Cd

 $3/2^+ \rightarrow 1/2^+$ mixed M1/E2

¹¹¹Cd: 5/2_{1.2.3}⁺ states

Number	r of	bagi	a ata	tor	fo	Tt Tt	E/2 10	12.			
Nullibe	1 01	Dasta	5 510	ices	10	1 00 =	5/2 18	13:			
NC,	JC,	Jp,	Lр,	(sp	10), Jt >	EX(KeV):	205.02	588.41	784.08	Predicted negative a factors
							g factor:	-0.502	-0.217	-0.221	r redicted negative g lactors
1	2	7/2	4	(#	4)	5/2		0.055412	-0.022356	-0.005479	-0.193541
2	2	7/2	4	(#	4)	5/2		-0.001520	0.000216	-0.036944	0.170422
2	4	7/2	4	(#	4)	5/2		-0.014572	0.008535	0.055239	0.209400
2	0	5/2	2	(#	3)	5/2		0.027491	0.064907	-0.106497	-0.070984
2	2	5/2	2	(#	3)	5/2		0.020536	0.153249	0.068694	-0.047313
2	4	5/2	2	(#	3)	5/2		0.031646	0.122353	-0.116468	0.160426
0	0	5/2	2	(#	3)	5/2		0.942679	-0.252305	0.196564	0.066962
1	2	5/2	2	(#	3)	5/2		-0.177872	0.084888	0.917382	-0.087685
2	2	3/2	2	(#	2)	5/2		0.015032	0.054609	-0.026840	0.085343
1	2	3/2	2	(#	2)	5/2		-0.064757	0.024468	0.018026	0.884982
2	4	3/2	2	(#	2)	5/2		0.034944	0.135788	-0.025110	-0.112697
1	2	1/2	0	(#	1)	5/2		0.260520	0.929222	-0.021240	-0.005131
2	2	1/2	0	(#	1)	5/2		-0.027270	0.020546	0.289091	0.203123

of spin	5/2:		
Number	g	mu (N.M.)	Q (e.b.)
20	0.401	1.001	0.045
21	0.387	0.968	-0.043
22	0.346	0.864	0.051
23	0.318	0.795	0.032
24	0.327	0.817	0.109
25	-0.200	-0.500	0.144
26	-0.251	-0.627	0.002
27	-0.207	-0.517	-0.047
28	0.303	0.759	-0.046
29	0.484	1.211	-0.037
30	-0.221	-0.553	0.008
31	-0.217	-0.542	0.011
32	-0.502	-1.255	-0.230
	of spin Number 20 21 22 23 24 25 26 27 28 29 30 31 32	of spin 5/2: Number g 20 0.401 21 0.387 22 0.346 23 0.318 24 0.327 25 -0.200 26 -0.251 27 -0.207 28 0.303 29 0.484 30 -0.221 31 -0.217 32 -0.502	of spin 5/2: Number g mu (N.M.) 20 0.401 1.001 21 0.387 0.968 22 0.346 0.864 23 0.318 0.795 24 0.327 0.817 25 -0.200 -0.500 26 -0.251 -0.627 27 -0.207 -0.517 28 0.303 0.759 29 0.484 1.211 30 -0.221 -0.553 31 -0.217 -0.542 32 -0.502 -1.255

Particle-vibration model calculations

Can explain 3 Coulomb-excited 5/2⁺ states

¹¹¹Cd: 5/2_{1.2.3}⁺ states

Mumber		hand			£	76	E / 0 d =	1.2.			
NUMDE NC,	JC,	Jp,	s sta Lp,	ates (sp	id)	Jt = , Jt >	5/2 18 Ex(keV): g factor:	13: 205.02 -0.502	588.41 -0.217	784.08 -0.221	Predicted negative g factors
1	2	7/2	4	(#	4)	5/2		0.055412	-0.022356	-9.005479	
2	2	7/2	4	(#	4)	5/2		-0.001520	0.000216	-0.036944	Drolingingny regult
2	4	7/2	4	(#	4)	5/2		-0.014572	0.008535	0.055239	Preliminary result.
2	0	5/2	2	(#	3)	5/2		0.027491	0.064907	-0.106497	
2	2	5/2	2	(#	3)	5/2		0.020536	0.153249	0.068694	
2	4	5/2	2	(#	3)	5/2		0.031646	0.122353	-0.116468	
0	0	5/2	2	(#	3)	5/2		0.942679	-0.252305	0.196564	$a(5/2^{+}) > 0 [\approx +0.46(16)]$
1	2	5/2	2	(#	3)	5/2		-0.177872	0.084888	0.917382	9(0/2 3) * 0 [***0.10(10)]
2	2	3/2	2	(#	2)	5/2		0.015032	0.054609	-0.026840	0.085343
1	2	3/2	2	(#	2)	5/2		-0.064757	0.024468	0.018026	0.884982
2	4	3/2	2	(#	2)	5/2		0.034944	0.135788	-0.025110	-0.112697
1	2	1/2	0	(#	1)	5/2		0.260520	0.929222	-0.021240	-0.005131
2	2	1/2	0	(#	1)	5/2		-0.027270	0.020546	0.289091	0.203123

13 states	of spin	5/2:		
Ex (keV)	Number	g	mu (N.M.)	Q (e.b.)
1690.299	20	0.401	1.001	0.045
1675.229	21	0.387	0.968	-0.043
1620.016	22	0.346	0.864	0.051
1578.792	23	0.318	0.795	0.032
1437.218	24	0.327	0.817	0.109
1418.983	25	-0.200	-0.500	0.144
1405.683	26	-0.251	-0.627	0.002
1244.327	27	-0.207	-0.517	-0.047
979.681	28	0.303	0.759	-0.046
971.438	29	0.484	1.211	-0.037
784.082	30	-0.221	-0.553	0.008
588.405	31	-0.217	-0.542	0.011
205.023	32	-0.502	-1.255	-0.230

Particle-vibration model calculations

Can explain 3 Coulomb-excited 5/2⁺ states

¹¹¹Cd: 3/2₁⁺ state

Number of h	basis sta	ates for J	Jt =	3/2 is	12:					
NC, JC, J	Јр, Цр,	(sp id),	Jt >	Ex(keV):	371.42	609.92	808.08	953.59	1006.44	
				g factor:	0.635	0.935	-0.302	0.393		
				-						
1 2	7/2 4	(#4)	3/2	/	0.235577	0.152159	-0.105608	0.142747	0.903242	
2 2	7/2 4	(# 4)	3/2	/	-0.034806	-0.028848	-0.028451	0.040324	-0.202877	
2 4	7/2 4	(# 4)	3/2		-0.023430	-0.018154	0.046439	0.251317	-0.061923	
1 2	5/2 2	(#3)	3/2		0.138675	0.110605	0.951678	0.109582	0.026423	
2 2	5/2 2	(#3)	3/2		-0.041503	0.078101	-0.074904	-0.130463	-0.079203	
2 4	5/2 2	(#3)	3/2		-0.097703	0.196817	-0.065241	0.096741	-0.019460	
2 2	3/2 2	(# 2)	3/2		0.046713	-0.097513	-0.068574	0.001926	0.077458	
0 0	3/2 2	(# 2)	3/2		0.826741	0.415732	-0.159808	0.122910	-0.308607	
1 2	3/2 2	(# 2)	3/2		-0.144424	-0.093591	-0.007772	0.843800	-0.061222	
2 0	3/2 2	(#2)	3/2		0.053885	0.027618	0.037286	-0.051304	0.155931	
2 2	1/2 0	(# 1)	3/2		0.034296	0.034055	0.195523	-0.383010	0.049816	
1 2	1/2 0	(# 1)	3/2		-0.449024	0.851817	-0.020056	0.003197	-0.005386	
12 states	s of spin	n 3/2:				\searrow				
Ex (keV)) Numbe	er g		mu (N.M.)	Q (e.b.)			!	5/2+	752.8
1703.500	8	0.48	37	0.731	0.230					702.0
1655.871	9	0.51	19	0.779	0.014				//2*	/04.9
1628.182	10	0.42	27	0.641	-0.109					
1591.724	11	0.23	32	0.348	0.002		\mathbf{i}	Į	5/2+	620.2
1450.704	12	1.07	77	1.615	0.051					
1410.800	13	-0.18	36	-0.280	-0.024					
1255.009	14	0.98	35	1.478	-0.045					
1006.442	15	0.24	18	0.372	-0.104					
953.594	16	0.39	93	0.590	0.129				+	
808.077	17	-0.30	02	-0.454	0.001				7/2*	416.7
609.920	18	0.93	35	1.403	0.003					
371.417	19	0.63	35	0.952	-0.148		∪/+⊗ a	:↓3/ <mark>∠</mark> :	3/2*	342.1
						,		,		
								,		04E 4
									0/2	245.4

Particle-vibration model calculations

• Predict 2 Coulomb-excited 3/2⁺ states

¹¹¹Cd: No 3/2₂⁺ state?

Particle-vibration model calculations

Where is the second 3/2⁺ state?

¹¹¹Cd: No 3/2₂⁺ state?

Particle-vibration model calculations

Where is the second 3/2⁺ state?

Odd-A Cd & Collectivity

g factors and the core collectivity:

 Sensitive to the nature of the core collectivity in ways E2 rates are not

 $B(E2: 3/2 \rightarrow 1/2) / B(E2: 5/2 \rightarrow 1/2)$ Same for PV and PR cases

Odd-A Cd & Collectivity

g factors and the core collectivity:

- Sensitive to the nature of the core collectivity in ways E2 rates are not
- Particle-vibration and particle-rotor models reduce to same limit for j=1/2 orbits
- ✓ Deformation mixes s_{1/2} with d_{3/2}, particle-vibration coupling mixes d_{5/2}
- Must consider M1 observables along with E2 in mapping the path to collectivity

Emerging nuclear collectivity

Shape coexistence in the even-Hg isotopes: NOTE characteristic *parabolic energy* trend

FIG. 2. (Color online) Energy differences for states of spin band and the even-spin yrast states with a difference units of angular momentum.

Figure from J. Elseviers et al. PR C84 034307 2011

Incomplete EM data

g factors & collectivity

Nushellx with interactions from Alex Brown – PRC **71**, 044317 (2005) Data: ANU & ORNL: PRL **94,** 192501 (2005); PRC **76**, 034306 (2007); PRC **76**, 034307 (2007); PRC **88**, 051304(R) (2013)

Emerging nuclear collectivity

B(E2) Results "Low" B(E2) in ¹³⁶Te Ba Xe Z=50+2 protons 0.5 $B(E2; 0^+ \rightarrow 2^+) (e^2b^2)$ Te N=82+2 neutrons 0.3 **2**₁⁺ state: predominantly Sn HRIBF a neutron excitation? 0.1 70 82 86 90 74 78 **Neutron Number**

Radford et al. PRL 88, 222501 (2002)

Emerging nuclear collectivity

Conflicting theoretical predictions for ^{134,136}Te

Differences stem from:

- proton-neutron interactions
- effective nucleon g factors: g_l and g_s

[SM] G. Jakob et al. PRC 65, 024316 (2002);
[SM] B. A. Brown et al., PRC 71, 044317 (2005)
[QRPA] J. Terasaki, et al., PRC 66, 054313 (2002);
[MCSM] N. Shimizu et al., PRC 70, 054313 (2004).

New B(E2) and g (2^+) data for 136 Te

J.M. Allmond, A.E. Stuchbery, M. Danchev, C. Baktash, et al

HRIBF Oak Ridge

Results

B(E2) Results

Radford et al. PRL 88, 222501 (2002)

Emerging nuclear collectivity

First g factor result in ¹³⁶Te

Z=50 + 2 protons N=82 + 2 neutrons

2₁⁺ state: predominantly a neutron excitation?

Shell Model: Qualified 'Yes'

But collective features emerging

Electron and γ spectroscopy

Super-e

- CE
- e⁺e⁻

Beam

CAESAR array

LaBr3 enhancement Caesar array Poster – Aqeel Akber Higher efficiency detectors

Also SolenoGam Poster – Matt Gerathy

Target

Pair spectroscopy of the Hoyle State

Triple- α reaction in helium burning stars produces carbon in the universe

Sir Fred Hoyle (1915-2001)

Our first ¹²C pair spectrum from the Hoyle state:

Tibor Kibédi : Talk Nuclear Structure A Friday

0⁺ states and E0 in Fe, Ni

- Tibor Kibedi, Adam Garnsworthy (TRIUMF)
- \Rightarrow Tomas Erikson this session
- Electron spectroscopy with Super-e: CE and pairs
- Gamma spectroscopy with CAESAR (δ and γγ)
- (p,p') reaction
- Note: Can do angular distributions with (p,p') - there is alignment! (s-wave scattering?)

E0 Workshop

11-12 September 2015

- new instruments/facilities/results
- physics opportunities/exotic beams
- shape co-existence & E0 transitions
- > Auger electrons the "forgotten" child of IC
- Ongoing: E0 working group (Tibor Kibedi, John Wood)
- Wiki: https://en.wikiversity.org/wiki/Monopole

E0 transition rate

$$T(E0) = \Omega |\rho(E0)|^2$$

Measure T(E0):

- I_{ce} or I_{π} (e/ π spectroscopy)
- $T_{1/2}$ (e or γ timing spectroscopy)
- $\delta(E2/M1)$ (γ -ray angular correlations)

Electronic factor $\Omega(\kappa)$:

- Atomic physics
- Resurrected CATAR program (HC Pauli)
- Make $\Omega(\kappa)$ available with Brlcc soon

http://bricc.anu.edu.au/

Monopole transition rate:

$$\phi^2(E0) \propto \alpha^2 \beta^2 [\langle r^2 \rangle_1 - \langle r^2 \rangle_2]^2$$

We must consider magnetic moments and electric monopole transitions along with E2 observables to elucidate the nature and origin of nuclear collectivity

End