

CERN-MEDICIS : Non-conventional radioisotopes for medical applications

A.P. Bernardes¹, R. Catherall¹, K. Kershaw¹, S. Marzari¹, <u>T. Stora¹</u>, J. Prior², L. Buehler³, O. Ratib³, on behalf of the CERN-MEDICIS Collaboration

¹ CERN, Geneva, Switzerland
² CHUV, Lausanne, Switzerland
³ HUG, Geneva, Switerland

short time.

Please note Abstracts are currently in the process of being selected.

Invitation

We are pleased to announce that the 26th International Nuclear Physics Conference (INPC2016) will take place in Adelaide (Australia) from September 11-16, 2016. The 25th INPC was held in Firenze in 2013 and the 24th INPC in Vancouver, Canada, in 2010.

(INPC2016) will take place in Adelaide (Australia) from 25th INPC was held in Firenze in 2013 and the 24th I 2010.

Yes :

Imaging of prostate cancer gastrin releasing peptide receptor, GRPr, and targeted radiopeptide therapy combined with radiation therapy

Franz Buchegger¹, David Viertl^{1,2*}, Eleni Gourni³, John O. Prior¹, Thierry Stora⁴, Leo Bühler⁵, Beatrice Waser⁹, Marek Kosinski⁶; Raymond Miralbell⁷, Cristina Müller⁸, Jean Claude Reubi⁹, Helmut R. Maecke³ and Rosalba Mansi³

No!

What CERN is best known for ...

p (proton) ion neutrons p (antiproton) electron +++ proton/antiproton conversion

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron 224 Radium Antiproton Decelerator CTF3 Clic Test Facility AWAKE Advanced WAKefield Experiment ISOLDE Isotope Separator OnLine DEvice

LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

²²⁴Radium octupole deformation by Coulex

T. Stora EN-STI - CERN-MEDICIS - INPC 2016

Radioisotopes and nuclear medicine

NATURE | NEWS FEATURE

< 🛛 🗐

Radioisotopes: The medical testing crisis

With a serious shortage of medical isotopes looming, innovative companies are exploring

ways to make them without nuclear reactors.

99Technecium supply shortage

From U. Koester, workshop on physics for Health in Europe CERN, Feb. 2010

Classification of Isotopes for Medicine

- 1. Established isotopes "industrial" suppliers ^{99m}Tc, ¹⁸F, ^{123,125,131}I, ¹¹¹In, ⁹⁰Y supply security optimization of production/scale effects > cost reduction
- 2. Emerging isotopes "small" innovative suppliers ⁶⁸Ga, ⁸²Rb, ⁸⁹Zr, ¹⁷⁷Lu, ¹⁸⁸Re guality, GMP, certification
- 3. R&D isotopes research labs ^{44,47}Sc, ^{64,67}Cu, ¹³⁴Ce, ¹⁴⁰Nd, ^{149,152,155,161}Tb, ¹⁶⁶Ho, ^{195m}Pt, ²¹¹At, ^{212,213}Ei, ²²³Ra, ²²⁵Ac,... availability at affordable cost

Concept of theranostics pairs

y photon (511 keV

Patien

Đ

Tb 155

5.32 d

jnumed.112.107540v1

y photon (511 keV)

Electron

Tb 152

C. Muller et al.

12.8

42 m 17.5 h

- 283

Target

15 years ago

G.-J. Beyer¹, M. Miederer², S. Vranješ-Durić³, J. J. Čomor⁴, G. Künzi⁵, O. Hartley⁵, R. Senekowitsch-Schmidtke⁶, D. Soloviev¹, F. Buchegger¹, and the ISOLDE Collaboration

Tb 161

6.90 d

0.5.04.

26:49:75

How to progress in the field ?

Courtesy Prof. MD Osman Ratib in the context of CERN-MEDICIS

A first example Added functionality : Molecular engineering (inorganic chemistry)

Folate bioconjugate with fluorescence and radioligand chelator Tkhe Kyong Fam, Prof Dubikovskaya, EPFL

A second example : CERN-MEDICIS

When a CERN proton beam intercepts a target: (and if you are not careful enough)

T. Stora EN-STI - CERN-MEDICIS - INPC 2016

Radioisotope Beam Production at ISOLDE

nore details please contact the ISOLDE Target Group, Thierry Stora

New isotope beams by mass separatio (ISOL)

221619

1st Boron ISOL beams: ⁸BF₂⁺ from carbon nanotubes

 $^8\text{BF}_2^{+}$ (T1/2 880ms) produced from multiwall carbon nanotube target (fast diffusion) and CF_4 reactive gaz injection (volatile BF_3 molecule) « CHEMICAL EVAPORATION »

24	12	12	2	a	2	a	1	2	a	2	a	21	2
Th	Pa	JU	Np	Pu	Am	Cm	Bk	CP	Es	Fm	Md	No	L#

C. Seiffert, Production of radioactive molecular beams for CERN-ISOLDE. PhD thesis TU Darmstadt, CERN (2015)

Multiwall Carbon Nanotubes

A dedicated mass separation facility for medical applications

Start operation 2017

The complete cycle of MEDICIS

Promed

MEDICIS-PROMED

« MEDICIS-Produced radioisotope beams for medicine »

Apr 2015 – March 2019

The intersectorial distributed network 15 PhD students

CERN

ENCINEERING DEPARTMENT

Overview of the Research Network

MEDICIS-PROMED: Innovative treatments based on radioactive ion beam production.

	Pure innova Radioisotope & from 2015 CERN-MEDICIS CERN-MEDICIS radioactive io Mass purifica at medical cycl	tive beams on within work hears nears on within hears on wew packate otrons	aging Radiopharmaceu targeting ovari cancer	Transport ticals	Functional Imaging	New Personalized Treatment Theranostics Isotope Pairs 11C PET aided hadrontherapy	
		MEDICIS	PROMED trai	ning netwo	rk		
, 	"Timely	Coor	dination Dr. T. St	ora, CERN M	edical coord	dination : PhD. MD	J. Prior. CHU
				· · · · · · · · · · · · · · · · · · ·	•	, , , , , , , , , , , , , , , , , , ,	
	novations" WP3:th	eranostic pharmace	euticals/surgery	for new ovar	ian cancer pe	rsonalized treatment	
Terbium isot	tope theranostic pairs	AAA (FR	lead- radiopharn	naceuticals - E	SR6		
Biological targ	gets for ovarian cancer	s IST (PT)/	dna targetting - ES	R8			
		CERN MI	EDICIS (EU)/molect	ular break-up -	ESR1	κ	
		HUG (CH	I)/surgery - ESRCH	3			
"Timely	W/D 1 · mass separati	CHUV(C	H)/preclinical tests	- ESRCH2	Det aided 110	hadrontherany	"Timely
milovutions					et alueu IIC	паціонскару	IIIIIOVULIOIIS
Graphene	JOGU (DE) lead - laser p	ourification - ESR5		CNAO (IT	⁻) lead - 11C ha	drontherapy - ESR9	
CERN-MEDICIS	UNI MANCHESTER (UK),	/adv material- ESR4		KUL (BE)	- mass sep 110	C - ESR11	Medaustron
:Sa lon sources	CERN MEDICIS (EU)/ pro	oduction safety - ESR2	2	CERN ME	DICIS (EU) - 11	C acceler ESR3	animal models
	Lemer-Pax (FR) /transpo	ort - ESR10	_ ←	→ ^{HUG} (CH)) - imaging tes	ts -ESRCH1	
^α -isot. Transp.	IST (PT)/nanofibers - ES	R7		EPFL (CH,) - biochemical	synthesis - ESRCH4	
				Medaust	ron (AT) - hadr	ontherapy	

ī:Sa

Labelling of 78Fc anti-TEM1 with radiometals

First PET imaging of ¹⁵²Tb-CHX-A"-DTPA-ScFv78Fc

Ewing Sarcoma cell line A673

UNIL Université de Lausanne

Cicone F et al. IRIST Conference, Lausanne 2016 CERN-MEDICIS – IN

Faculté de biologie et de médecine

Isotope mass separation and post acceleration >1°7pps 110Sn 4.5MeV/n delivered in sept 2016 !

World map of hadrontherapy centers

¹¹C Beams for combined PET/Hadron therapy

Comparison of in-beam PET with fragment 12C (11C, 15O) and direct 11C use

Annihilation Events at Rest Mapped An increase of up to one order of magnitude is

R. Augusto et al.

These studies have been performed at HIMAC, NIRS

Positron emitter

y photon (511 keV)

Electron

y photon (511 keV)

Patient

Turnor Detector

Directly in the ECRIS

PET production 2	22	150	N ₂	$^{14}N(p,\alpha)^{11}C$	3×10^{10}	741	1.5×10^8	1.3
(production batch) REX-ISOLDE 7	70	1200	(≤1 atm) NaF:LiF	¹⁹ F(p,2αn) ¹¹ C	4×10^{11}	56	$1.5 imes 10^8$	18

 T.M. Mendonca et al., CERN-ACC-2014-0 S. Hojo, et al. NIMB 240, 75 (2005).

R. Augusto et al NIMB, 376, 374 (2016)

T. Stora EN-STI - CERN-MEDICIS – INPC 2016

CERN-MEDICIS partners

- Dr. Forni (Clin. Carouge, Geneve)
- Prof. Morel, Prof. Buehler, Prof. Ratib (HCUGE, Geneve)
- Prof. D. Hanahan (ISREC, EPFL, Lausanne)
- Prof. J. Prior (CHUV, Lausanne)
- Prof M. Huyse, prof. P. van Duppen, prof. T. Cocolios (KUL, Univ. Leuven)
- Prof. S. Lahiri (SINP, Kolkata)
- Prof. A. Goncalves, Prof. A. Raucho (CT2N, Lisbon)
- Prof. F. Haddad (ARRONAX)
- F. Bruchertseifer, A. Morgenstern (JRC-ITU, Karlsruhe)
- S. Judge, P. Regan, (National Physical Laboratory, Surrey)
- N. Vd Meulen, C. Mueller (Paul Scherrer Institut, Villingen)

[&]quot;Noah, tell me again who's your project sponsor?"

Training in Manchester with prof. Kostya Novozelov

www.cern.ch/medicis-promed

This research project has been supported by a Marie Skłodowska-Curie Innovative Training Network Fellowship of the European Commission's Horizon 2020 Programme under contract number 642889 MEDICIS-PROMED.

Thank you !!

(INPC2016) will take place in Adelaide (Australia) from 25th INPC was held in Firenze in 2013 and the 24th I 2010. munitorine (a torm of very aggressive orall cancer) of panercane lais rolladenocarcinoma. The latter is a leading cause of cancer death in the developed world and surgical resection is the only potential The treatment, although many patients are not candidates for surgery. seen Although external-beam gamma radiation and chemotherapy are used to treat patients with non-operable pancreatic tumours, and A ce survival rates can be improved by combined radio- and chemo-The therapy, there is still a clear need for novel treatment modalities for by P pancreatic cancer. use

A new project at CERN called MEDICIS aims to develop non- rays

Some yield estimates

				ISOI	LDE [†]		CERN-M	EDICIS [†]	CERN-M	IEDICIS 20	GeV 6µA	
Medical	Isotope	Parent	Target	In-ta	arget	RIB	In target	Extracted	Possible	In-target		
pplication	half- life	isotope beam	- Ion source	Production rate (pps)	ActivityEOB (Bq)		Activity EOB (Bq)	gain Eext (%)	Activit Extracted EOB	ty EOB/ l Activity (Bq)	Comments	
3- therapy/ CT/dosimetry	²¹³ Bi 45.6m	²²⁵ Ac	UCX-Re	1.5E9*	7.2E8	²²¹ Fr 10	2.8E8	2.8E7	50	8.4E8	4.2E8	Only mass separation
β therapy	²¹² Bi 60.6m	²²⁴ Ac	UCX-Re	1.5E9*	1.4E9	²²⁰ Fr 10	1.7E9	1.7E8	50	5.1E9	2.5E9	Only mass separation
β therapy	¹⁷⁷ Lu 6.7d	¹⁷⁷ Lu RILIS/VD	Ta-Re/ Re-VD5	3.3E9	7.4E8	¹⁷⁷ Lu 1	6.4E8	6.4E6	20	8.3E8	1.7E8	Chemical purification
ger therapy	¹⁶⁶ Yb 56.7h	¹⁶⁶ Yb	Ta-Re	1.4E10	5.4E10	¹⁶⁶ Yb 5	4.1E10	2.1E9	20	5.4E10	1.1E10	Chemical purification
β therapy	¹⁶⁶ Ho 25.8h	¹⁶⁶ Ho	Ta-Re	1.4E7	1.2E7	¹⁶⁶ Ho 5	9.6E6	4.8E5	20	2.9E7	6.0E6	Chemical purification
luger therapy	¹⁶¹ Tb 6.9d	¹⁶¹ Tb	UCX-Re	2.1E7	2.7E7	¹⁶¹ Tb 5	1.9E7	9.5E5	20	2.7E7	5.4E6	Chemical purification
3- therapy	¹⁵⁶ Tb 5.35d	¹⁵⁶ Tb	Ta-Re	2.5E8	8.9E7	¹⁵⁶ Tb 1	5.5E7	5.5E5	20	6.3E7	1.3E7	Chemical purification
SPECT	¹⁵⁵ Tb 5.33d	¹⁵⁵ Dy/ Tb	Ta-Re	3.2E9/ 7.4E8	7.9E9	¹⁵⁵ Dy 1	5.3E9	5.3E7	20	3.4E9	6.8E8	RILIS Dy
3 therapy	¹⁵³ Sm 46.8h	¹⁵³ Sm	UCX-Re	1.5E8	2.2E9	¹⁵³ Sm 5	2.8E9	1.4E8	20	5.2E9	1.0E9	Chemical purification
PET/CT	¹⁵² Tb 17.5h	¹⁵² Dy/ Tb	Ta-Re	1.3E10/ 3.3E9	5.6E10	¹⁵² Dy 1	3.7E10	3.7E8	20	1.1E11	2.2E10	RILIS Dy
6 therapy	41b		a-Re	1.1E10	6.0E10	T. Baterra	EN-STI - C 3.8E10	ERN-MED	$\operatorname{DICIS}_{20} - I$	NPC 20 1.2E11	2.4E10	Chemical purification

⁴⁰ Pr-PET/ ger therapy	¹⁴⁰ Nd 3.4d	¹⁴⁰ Nd	Ta-Re	1.8E9	2.0E10	¹⁴⁰ Nd 5	1.2E10	6.0E8	20	2.0E10	4.0E9	Chemical purification
- therapy	⁸⁹ Sr 50.5d	⁸⁹ Sr	UCX-Re	1.2E10	2.3E9	⁸⁹ Sr 5	2.0E9	1.0E8	20	2.7E9	5.4E8	Only mass searation
PET	⁸² Sr 25.5d	⁸² Sr	UCX-Re	3.6E10	4.6E9	⁸² Sr 5	1.7E9	8.5E7	20	2.0E9	4.0E8	Only mass separation
- therapy	⁷⁷ As 38.8h	⁷⁷ As	UCX- VD5	5.7E9	1.1E10	⁷⁷ As 5	5.8E9	2.9E8	20	9.4E9	1.4E9	Chemical purification
PET	⁷⁴ As 17.8d	⁷⁴ As	Y ₂ O ₃ -VD5	6.5E9	1.2E9	⁷⁴ As 5	3.8E8	1.9E7	20	4.5E8	9.0E7	Chemical purif
PET	⁷² As 26.0d	^{72}As	Y ₂ O ₃ -VD5	1.6E10	2.8E10	⁷² As 5	9.1E9	4.6E8	20	1.5E10	3.0E9	Chemical purification
PET	⁷¹ As 65.3h	⁷¹ As	Y ₂ O ₃ -VD5	1.8E10	1.8E10	⁷¹ As 5	5.9E9	3.0E8	20	8.0E9	1.6E9	Chemical purification
3 therapy	⁶⁷ Cu 61.9h	⁶⁷ Cu	UCX-Re	2.7E9	3.4E9	⁶⁷ Cu 7	1.5E9	1.1E8	20	2.7E9	5.4E8	Chemical purification
PET	⁶⁴ Cu 12.7h	⁶⁴ Cu	Y ₂ O ₃ -VD5	1.1E10	2.3E10	⁶⁴ Cu 5	7.1E9	3.6E8	20	2.1E10	3.6E9	Chemical purification
, dosimetry	⁶¹ Cu 3.3h	⁶¹ Cu	Y ₂ O ₃ -VD5	7.7E9	1.7E10	⁶¹ Cu 5	5.1E9	2.6E8	20	2.1E10	4.0E9	Only mass separation
3 therapy	⁴⁷ Sc 3.4d	⁴⁷ Sc	Ti	6.4E10	5.0E10	⁴⁷ Sc 5	4.2E10	2.1E9	20	5.9E10	1.2E10	Evaporation
PET	⁴⁴ Sc 4.0h	⁴⁴ Sc	Ti	4.4E10	6.6E10	⁴⁴ Sc 6.4	5.7E10	2.9E9	20	1.6E11	3.2E10	Evaporation
PET	¹¹ C 20.3m	¹¹ CO	NaF-LiF- VD5 [◊]	-	-	- 15	-	1.4E9	-	-	4.2E9	Only mass separation

Training : Events and models

Kick-off week - CERN (EU) 8-12 feb 2016, before ICTR-PHE 2016

General training 1 – Manchester (UK) Workshop on functional multimodal SPECT/PET imaging – Lausanne/Geneva (CH) Specialized training 2 – Leuven (BE) Summer school 1 at CNAO – Pavia (IT). Summer school 2 at C2TN-IST – Lisbon (PT)

K. Novoselov, Graphene Institute – Physics Nobel Prize 2010 – Scientific Innovation and Advanced Materials

U. Koester, ILL- chairman of the NuPECC working group for *Nuclear Physics for Medicine-Radioisotope production*– Production of medical radioisotopes

P. Van Duppen, KUL – Adv ERC – Radioactive Ion Beams and Lasers

- S. Buono, AAA Radiopharmaceuticals marketing and Entrepreneurship
- G. Coukos, CHUV Adv. ERC Immunotherapy and cancer treatment
- P. Lecoq, CERN Adv ERC Detectors and Medical imaging
- K. Noda-san NIRS PET-aided hadron therapy with carbon ions

Program cohesion : Oxford University Said Business School (ECTS, PhD)

THE BIRTH OF ON-LINE ISOTOPE SEPARATION

ISOLDE "0"

O.Kofoed-Hansen K.O. Nielsen Dan. Mat.Fys.Medd. 26, no. 7 (1951)

From CERN 76-13, 3rd conf. nuclei far from stability T. Stora EN-STI - CERN-MEDICIS – INPC 2016

Translational approach

Prof D. Hanahan, Swiss Inst. For Exper. Cancer Research Lauréat du prix 2014 « Contribution pour l'impact global tout au Long d'une carrière » assoc. Americaine Rech. Cancer

Hallmarks of Cancer: The Next Generation

Douglas Hanahan^{1,2,*} and Robert A. Weinberg^{3,*} ¹The Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne CH-1015, Switzerland ²The Department of Biochemistry & Biophysics, UCSF, San Francisco, CA 94158, USA ³Whitehead Institute for Biomedical Research, Ludwig/MIT Center for Molecular Oncology, and MIT Department of Biology, Cambridge, MA 02142, USA

*Correspondence: dh@epfl.ch (D.H.), weinberg@wi.mit.edu (R.A.W.)

GRPr : Gastrin Releasing Protein receptor

In the Stomach tissues (Gastric acid)

And also overexpressed in some cancer tissue I. Dijkgraaf et al., JNM 53, 947 (2012)

32

8 ICTR-PHE-2014

Neurokinin subtype I receptor (NK1R) is overexpressed in glioma cells and tumor v

11mer Substance P (SP) is member of the tachykin peptide neurotransmitters famil

SP:Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met

213Bi-DOTAGA-Arg1-SP 213Bi-DOTA-[Thi8,Met(O2)11]-SP

Neoadjuvant and adjuvant intracavity treatment before resection.

Comparaison with external radiotherapy

Therapeutic nuclear medicine (medical radiology series, R. P. Baum Ed, Springer, 2

Collaboration with JRC-ITU

Cf prof. Merlo : Intracavity injection+resection of Glioblastoma

Intracavity injection +resection of Glioblastoma

Targeted alpha-radionuclide therapy of functionally critically located gliomas with ²¹³Bi-DOTA-[Thi⁸,Met(O₂)¹¹]-substance P: a pilot trial

D. Cordier • F. Forrer • F. Bruchertseifer • A. Morgenstern • C. Apostolidis • S. Good • J. Müller-Brand • H. Mäcke • J. C. Reubi • Eur J Nucl Med Mol Imaging (2010) 37:1335–1344 DOI 10.1007/s00259-010-1385-5

ORIGINAL ARTICLE

Pat.	Age at Dx	Diagnosis/location of	Cycles/activity	Tumour	Barthel Index pre-/post-	PFS	OS
No. (yea	(years)	tumour	(GBq)	volume (cm ³)	therapeutic	(months)	(months)
1	60	GBM frontal L callosal	1/1.07	41.6	75/ 90	2	16
2	40	GBM frontal L (SMA precentral)	1/1.92	76.0	80/ 90	11	19
3	55	Astro WHO grade III fronto-opercular L	4/7.36	74.3	100/100	24+	24+
4	33	Astro WHO grade II frontal R (SMA)	1/1.96	12.0	100/100	23+	23+
5	39	Astro WHO grade II occipital R	1/2.00	17.1	100/100	17+	17+

PFS progression-free survival, *OS* overall survival, + ongoing, *SMA* supplemental motor area, *L* left, *R* right, *Astro* astrocytoma, *GBM* glioblastoma multiforme, *Dx* diagnosis

- Neurokinin subtype I receptor (NK1R) is overexpressed in glioma cells and tumor vessels
- 11mer Substance P (SP) is member of the tachykin peptide neurotransmitters family
- SP:Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met
- 213Bi-DOTAGA-Arg1-SP 213Bi-DOTA-[Thi8,Met(O2)11]-SP
- Neoadjuvant and adjuvant intracavity treatment before resection.
- Comparaison with external radiotherapy
- Therapeutic nuclear medicine (medical radiology series, R. P. Baum Ed, Springer, 2014)

Mass spectrometers

ENCINEERING

37

Click Chemistry

Click Chemistry: Diverse Chemical Function from a Few Good Reactions

Hartmuth C. Kolb, M. G. Finn, and K. Barry Sharpless*

Dedicated to Professor Daniel S. Kemp

Examination of nature's favorite mol-	these crucial molecules are made each	defined, enabled, and constrained by a
ecules reveals a striking preference for	contain, at most, six contiguous C-C	handful of nearly perfect "spring-load-
making carbon - beteroatom bonds	bonds, except for the three aromatic	ed" reactions. The stringent criteria for
over carbon-carbon bonds-surely	amino acids. Taking our cue from	a process to earn click chemistry status
no surprise given that carbon dioxide	nature's approach, we address here	are described along with examples of
is nature's starting material and that	the development of a set of powerful,	the molecular frameworks that are
most reactions are performed in water. Nucleic acids, proteins, and polysac- charides are condensation polymers of	highly reliable, and selective reactions for the rapid synthesis of useful new compounds and combinatorial libra-	easily made using this spartan, but powerful, synthetic strategy.
small subunits stitched together by	ries through heteroatom links	Keywords: combinatorial chemistry -
carbon-heternatom bonds. Even the	(C-X-C), an approach we call "dick	drug research - synthesis design -
35 or so building blocks from which	chemistry". Click chemistry is at once	water chemistry

1. Introduction: Beyond the Paradigm of Carbonyl Chemistry

Life on Earth requires the construction of arbon - carbon bonds in an aqueous wrivenment. Carbonyl (aldol) chemistry is nature's primary engine of C-C bond formation. Not only do the requisite carbon electrophiles (carbonyls) and mudeophiles coexist in water, huw tater provides the perfect environment for proton shutfling among reactants, which is required for revensible arbonyl chemistry.

With CO₂ as the carbon source and a few good carbonyl chemistry based reaction themes, nature achieves astonishing structural and functional diventity Carbonyl chemistry is used to make a modest collection of approximately 35 simple building block, which are them assembled into biopolymers. The enzymatic polymers serve, in concert with increments of energy provided by adenosine triphosphate, as selective [9] Pot K. B. Shapino, Pot M. G. Fim

Department of Chemistry The Sorippe Research Institute 10509 North Torny Pines Road La Jolla, CA 20137 (USA) Fast: (+1)835-784-2562 E-multi-thanglos@kocippe.edu Dr. H. C. Kolb Vice President of Chemistry Contenanth Corporation East Wandows NI 08520 (USA) catalysts which prevent nature's carbonyl chemistry hased syntheses from collapsing into chaos. Since many bicsynthetic pathways require a unique enzyme for each step, the enzymecontrol strategy required a heavy investment of time and resources for catalyst development. With a few billion years and a planet at her disposal, nature has had both time and resources to spare, but we, as chemistic the billion terms.

Nevertheless, carbonyl-based reac profoundly appealing to students and chemistry. It is our contention that ducted, as it has been, in imitatio chemistry is all suited for the rapid dir with desired properties.

Many transformations that form bonds are endowed with only a driving force. In particular, equilibri often energetically favorable by leav these processes to reach completic additional "puth" must be provided Le Chatelier's principle (for exampl), water), by coupling the desired proc reaction (for example, a strong "base by virtue of favorable entropic o intramolecular ring closure) without as formation of strained" of ester, resonar of one "ecurivalent" of ester, resonar

Anges: Chem. Int. Ed. 2001, 40, 2004-2021 0 WILE Y-VCH Verlag ClmbH, D-69451 Weinheim, 2001 1433-7851 01/4011-2002

Click = simple, fast, easily available, no/easy to remove solvent, simple isolation

1) Injection of mAb-TCO 2) Injection of Tb-tetrazine

[ex.stetrazine detrans-cyclooctene (TCO) 38

The Target : Tumor Endotelial Marker-1 (TEM1)

Overexpressed by:

Tumor Vessels

Tumor cells

Host microenvironment (fibroblasts, pericytes)

Morab 0004 (Clinical phase 2) scFv78-Fc (78Fc) full IgG anti-TEM1

First SPECT imaging of ¹¹¹In-CHX-A"-DTPA-ScFv78Fc

Ewing Sarcoma cell line A673

1.8 MBq/33 µg

Dual head SPECT/CT, 60 proj, 45 sec each

- ²³⁸U is fissioned by fast neutrons to produce Mo
- Requires the use of µm thick ²³⁸U metallic foil target for fission recoil
- However Mo is a refractory element, it cannot be released in atomic form.
- Our plan: react it with CO gas. Forms a complex which is volatile.

Formation of Mo(CO)₆ complex already achieved

J. Even, et al Radiochim Acta 2014

Method similar to that found in a

neutron spallation facility (SNS,

ESS, JSNS, ISIS, etc)

Some challenges: How to ionize $Mo(CO)_6$?

In order to form coordination complex, CO gas pressure should be high, however in order for the ion source to operate we require a low gas pressure. Potential solutions are the subject of current research.

Ion source choices:

- Plasma ion source
 - Will complex survive this ion source?
- RF ion source

L. Penescu, et al. "Development of high efficiency Versatile Arc Discharge Ion Source at CERN ISOLDE." Review of Scientific Instruments 81.2 (2010): 02A906. T. Stora, "Radioactive Ion Sources", CERN-2013-007, p331.

- Mo(CO)₆ not very stable can easily oxidize and dissociate at high temperature
- Requires the use of µm thick ²³⁸U metallic foil target for fission recoil out (25 micron ^{nat}U foils) at low temperature
- Grow graphene:

does not stop recoil isotopes, reduce oxidation and taylor Mo(CO)₆ adsorption

K.S. Novoselov and AH Castro Neto. "Two-dimensional crystals-based heterostructures: materials with tailored properties." Physica Scripta 2012.T146 (2012): 014006. D. Prasai, et al. "Graphene: corrosion-inhibiting coating." ACS nano 6.2 (2012): 1102-1108.

Fig. 4. Comparison of Ar-25% O₂ oxidation rates (circles) with dry-air oxidation rates from eqs. (6) (dashed line) and (7) (dot-dashed line) and from ref. [16] (triangles).

P.J. Hayward et al., J. Nucl. Mat 187, (1992)

- Alternative target materials : towards submicron uranium-based materials
- Work has started as with lanthanide precursors via electrospinning

M. S. Henriques, et al. "Preparation of Yb2O3 submicron-and nano-materials via electrospinning." Ceramics International 41(9), 10795 (2015).

Tentative planning

Phase	Action	Date
PHASE I	Commissioning: without beam (*)	2016
PHASE II	Commissioning with beam and light targets to gain operational experience	2017
PHASE II B	Isotope production with light targets	Mid 2017
PHASE III	Extending to heavy targets up to Tantalum	End 2017
PHASE IV	Collection of short lived alpha emitters (e.g. 149Tb)	2018
PHASE IV B	Operation with lasers	2018
PHASE V	Operation with uranium targets/possible proton beam upgrade	2019

* Preferable but may be hard to achieve

Plan for development of surgical methods (L. Buehler)

Outreach

1st Grace-MEDICIS collaboration/public lecture took place on 15th October 2014

The 2nd is in preparation : Prof W. Weber,

Memorial Sloan Kettering Cancer Center

Prof Doug Hanahan

Director ISREC Lausanne

AACR's Lifetime Achievement Award

