Search For Mixed-symmetry States In The Vicinity Of The Doubly-magic Nucleus ²⁰⁸Pb

Robert Stegmann - TU Darmstadt

TECHNISCHE UNIVERSITÄT DARMSTADT

Mixed-Symmetric Quadrupole States

⁹⁴Mo

- Example of pronounced mixed-symmetry states
- Doubly-magic 90 Zr core + α particle
- Large orbital momenta for valence π and ν \Rightarrow Large M1 transition strength
- ▶ $B(M1; 2_3^+ \rightarrow 2_1^+) = 0.56 (5) \mu_N^2$
- Single dominant MSS

92	93	94	95	96	97	98
Ru	Ru	Ru	Ru	Ru	Ru	Ru
91	92	93	94	95	96	97
Tc	Tc	Tc	TC	TC	Tc	Tc
90	91	92	93	94	95	96
Mo	Mo	Mo	Mo	Mo	Mo	Mo
⁸⁹	90	91	92	93	94	95
Nb	Nb	Nb	Nb	Nb	Nb	Nb
88	89	90	91	92	93	94
Zr	Zr	Zr	Zr	Zr	Zr	Zr
87	88	⁸⁹	90	91	92	93
Y	Y	Y	Y	Y	Y	Y
86	⁸⁷	88	⁸⁹	90	⁹¹	92
Sr	Sr	Sr	Sr	Sr	Sr	Sr

⁹⁴Mo

- Example of pronounced mixed-symmetry states
- Doubly-magic 90 Zr core + α particle
- Large orbital momenta for valence π and ν \Rightarrow Large M1 transition strength
- $B(M1; 2_3^+ \rightarrow 2_1^+) = 0.56 (5) \mu_N^2$
- Single dominant MSS
- Also two-phonon MSS identified

N. Pietralla, P. von Brentano and A. F. Liseskiy, PPNP 60, 225 (2008).

Mixed-Symmetric Quadrupole States

N = 80 Isotones

► Valence protons / valence neutron holes + ¹³²Sn core

138	139	140	141	142
Ce	Ce	Ce	Ce	Се
137	138	139	140	141
La	La	La	ца	ца
136	137	138	139	140
Ba	Ba	Ba	Ba	Ba
135	136	137	138	139
Cs	Cs	Cs	Cs	Cs
134	135	136	137	138
Xe	Xe	Xe	Xe	Xe
133	134	135	136	137
I	I	I	I	I
132	133	134	135	136
Те	Те	Те	Те	Те
131	132	133	134	135
Sb	Sb	Sb	Sb	Sb
130	131	132	133	134
Sn	Sn	Sn	Sn	Sn

N = 80 Isotones

- Valence protons / valence neutron holes + ¹³²Sn core
- Nuclei:
 - 134 Xe: $B(M1; 2_3^+ \rightarrow 2_1^+) = 0.30(2) \mu_N^2$
 - T. Ahn, et al., PLB 679, 19 (2009).

N = 80 Isotones

- Valence protons / valence neutron holes + ¹³²Sn core
- Nuclei:
 - 134 Xe: $B(M1; 2_3^+ \rightarrow 2_1^+) = 0.30(2) \mu_N^2$

T. Ahn, et al., PLB 679, 19 (2009).

138	139	140	141	142
Ce	Ce	Ce	Ce	Се
137	138	139	140	141
La	La	La	La	La
136	137	138	139	140
Ba	Ba	Ba	Ba	Ba
135	136	137	138	139
Cs	Cs	Cs	Cs	Cs
134	135	136	137	138
Xe	Xe	Xe	Xe	Xe
133	134	135	136	137
I	I	I	I	I
132	133	134	135	136
Те	Те	Те	Те	Те
131	132	133	134	135
Sb	Sb	Sb	Sb	Sb
130	131	132	133	134
Sn	Sn	Sn	Sn	Sn

N = 80 Isotones

- Valence protons / valence neutron holes + ¹³²Sn core
- Nuclei:
 - 134 Xe: $B(M1; 2_3^+ \rightarrow 2_1^+) = 0.30(2) \mu_N^2$

T. Ahn, et al., PLB 679, 19 (2009).

► ¹³⁶Ba: $B(M1; 2_3^+ \rightarrow 2_1^+) = 0.26(3) \mu_N^2$

N. Pietralla, et al., PRC 58, 796 (1998).

138	139	140	141	142
Ce	Ce	Ce	Ce	Се
137	138	139	140	141
La	La	La	La	La
136	137	138	139	140
Ba	Ba	Ba	Ba	Ba
135	136	137	138	139
Cs	Cs	Cs	Cs	Cs
134	135	136	137	138
Xe	Xe	Xe	Xe	Xe
133	134	135	136	137
I	I	I	I	I
132	133	134	135	136
Те	Te	Те	Те	Те
131	132	133	134	135
Sb	Sb	Sb	Sb	Sb
130	131	132	133	134
Sn	Sn	Sn	Sn	Sn

N = 80 Isotones

- Dominant fragments of MSS identified in N = 80 isotones
- Valence protons / valence neutron holes + ¹³²Sn core
- Nuclei:
 - ► ¹³⁴Xe: $B(M1; 2_3^+ \to 2_1^+) = 0.30 (2) \mu_N^2$ T. Ahn, et al., PLB **679**, 19 (2009).
 - ► ¹³⁶Ba: $B(M1; 2_3^+ \rightarrow 2_1^+) = 0.26$ (3) μ_N^2 N. Pietralla, *et al.*, PRC **58**, 796 (1998).
 - ¹³⁸Ce: $B(M1; 2_4^+ \rightarrow 2_1^+) = 0.122(10) \mu_N^2$

G. Rainovski, et al., PRL 96, 122501 (2006).

Mixed-Symmetric Quadrupole States

Gammasphere/Atlas @ ANL

- Coulomb excitation in inverse kinematics
 - ► ¹²C(²⁰²Hg, ²⁰²Hg^{*})¹²C
 - ► ¹²C(²⁰⁴Hg, ²⁰⁴Hg^{*})¹²C
- Beam: *E_{kin}* = 890 MeV
- Target: ¹²C (1 mg/cm²) 1 mm thick Al
- Detector: GAMMASPHERE array
 - 100 HPGe detectors in 16 rings
 - Quasi 4π configuration
- γ -singles mode

Gammasphere/Atlas @ ANL

- Coulomb excitation in inverse kinematics
 - ► ¹²C(²⁰²Hg, ²⁰²Hg^{*})¹²C
 - \sim ¹²C(²⁰⁴Hg, ²⁰⁴Hg^{*})¹²C
- Beam: *E_{kin}* = 890 MeV
- Target: ¹²C (1 mg/cm²) 1 mm thick AI
- Detector: GAMMASPHERE array
 - 100 HPGe detectors in 16 rings
 - Quasi 4π configuration
- γ -singles mode

FN tandem @ U of Cologne

- α-transfer reaction
 ²⁰⁸Pb(¹²C, ⁸Be)²¹²Po*
- Beam: $E_{kin} = 62 \, \text{MeV}$
- Target: ¹²C (10 mg/cm²)
- Detectors:
 - 12 HPGe detectors at 3 different angles
 - Array of 6 solar cells
- Master trigger: γ - α or γ - γ coincidences

 $\gamma\text{-ray}$ spectra & level scheme - $^{\rm 202}{\rm Hg}$

September 15, 2016 | TU Darmstadt - AG Pietralla | Robert Stegmann | 8

 $\gamma\text{-ray}$ spectra & level scheme - $^{\rm 202}{\rm Hg}$

 $\gamma\text{-ray}$ spectra & level scheme - $^{\rm 204}{\rm Hg}$

September 15, 2016 | TU Darmstadt - AG Pietralla | Robert Stegmann | 9

 $\gamma\text{-ray}$ spectra & level scheme - $^{\rm 204}{\rm Hg}$

September 15, 2016 | TU Darmstadt - AG Pietralla | Robert Stegmann | 9

 $\gamma\text{-ray}$ spectra & level scheme - ^{212}Po

September 15, 2016 | TU Darmstadt - AG Pietralla | Robert Stegmann | 10

 $\gamma\text{-ray}$ spectra & level scheme - ^{212}Po

²⁰⁴Hg

²¹²**Po**

²¹²**Po**

²¹²**Po**

²¹²**Po**

September 15, 2016 | TU Darmstadt - AG Pietralla | Robert Stegmann | 12

Summary

Mixed-symmetry states expected in vibrational nuclei around shell closures

- Mixed-symmetry states expected in vibrational nuclei around shell closures
- Experiments to further investigate region around ²⁰⁸Pb performed

- Mixed-symmetry states expected in vibrational nuclei around shell closures
- Experiments to further investigate region around ²⁰⁸Pb performed
- 2⁺_{1,ms} states identified

- Mixed-symmetry states expected in vibrational nuclei around shell closures
- Experiments to further investigate region around ²⁰⁸Pb performed
- 2⁺_{1.ms} states identified
 - 204 Hg: $B(M1; 2^+_{1,ms} \rightarrow 2^+_1) = 0.20$ (2) μ_N^2

- Mixed-symmetry states expected in vibrational nuclei around shell closures
- Experiments to further investigate region around ²⁰⁸Pb performed
- 2⁺_{1,ms} states identified
 - ▶ ²⁰⁴Hg: $B(M1; 2^+_{1,ms} \rightarrow 2^+_1) = 0.20(2) \mu_N^2$ ▶ ²¹²Po: $B(M1; 2^+_{1,ms} \rightarrow 2^+_1) = 0.13(2) \mu_N^2$

- Mixed-symmetry states expected in vibrational nuclei around shell closures
- Experiments to further investigate region around ²⁰⁸Pb performed
- 2⁺_{1,ms} states identified
 - ▶ ²⁰⁴Hg: $B(M1; 2^+_{1,ms} \rightarrow 2^+_1) = 0.20 (2) \mu_N^2$ ▶ ²¹²Po: $B(M1; 2^+_{1,ms} \rightarrow 2^+_1) = 0.13 (2) \mu_N^2$
- Candidate for 2⁺_{1 ms} state identified in ²⁰²Hg

Thank you for your attention

September 15, 2016 | TU Darmstadt - AG Pietralla | Robert Stegmann | 14