Locations of breakup in reactions near the fusion barrier

E. C. Simpson, K. J. Cook, M. Dasgupta, Sunil Kalkal, D. H. Luong, I. P. Carter and D. J. Hinde

Department of Nuclear Physics The Australian National University

Outline

- Fusion suppression with weakly-bound projectiles
- Prompt and delayed breakup modes of ⁷Li
- Classical modelling of near-target breakup on ⁵⁸Ni

Above barrier fusion suppression

Dasgupta et al., PRC 66, 041602(R) (2002); PRC 70, 024606 (2004); Wu et al., PRC 68 044605 (2004)

Experiment: Fragment detection

BALiN array

Double-Sided Silicon Strip Detectors

In this "lampshade" configuration sensitive only to backward angles

 $115^{\circ} < \theta < 170^{\circ}$ $30^{\circ} < \phi < 330^{\circ}$

[D. H. Luong, ANU PhD Thesis (2012)]

Relative energy distribution

 $^{7}Li \rightarrow {}^{8}Be \rightarrow \alpha + \alpha$

Expect differences in opening angle θ_{12} and relative energy E_{rel} ? Large E_{rel} correspond to earlier disintegration?

Plus, asymptotic \equiv very long-lived states

Experiment and asymptotic limits

Simpson *et al.*, PRC 93, 024605 (2016)

Post breakup acceleration

Suppose prompt breakup originates in the 2^+ resonance, with well defined initial E_x :

Sensitivity to target proximity

- Near target gives greater acceleration
- Larger changes in final E_{rel} w.r.t E_x
- Further from target, weaker acceleration
- Final E_{rel} closer to of E_x

Post breakup acceleration

Suppose prompt breakup originates in the 2^+ resonance, with well defined initial E_x :

Sensitivity to orientation

- Aligned perpendicular to the target field, leads to larger E_{rel}
- Aligned parallel to the target field, acceleration tells to reduce the final relative energy E_{rel}

Monte Carlo trajectory simulations

⁸Be 2⁺ resonance

A. M. Lane and R. G. Thomas, Rev. Mod. Phys. <u>30</u>, 257 (1958)

Reaction point

⁸Be decay point

Simulation assuming instant decay

Australian National University

Simulation incorporating lifetime

Summary and further work

Summary

- Results suggest much of the observed breakup at sub-barrier energies occurs when the projectile is receding from the target
- This has consequences for fusion can the break up happen fast enough to cause fusion suppression, contribute to ICF?

Outlook

- Limits of the model with an immutable ⁸Be, the delayed breakup will clearly affect incomplete fusion how important are tidal forces?
- Can we systematically understand sub-barrier breakup for other light projectiles such as ⁶Li and ⁹Be? What do we predict for ICF?
- Stable weakly bound more challenging than exotic nuclei we must understand the reaction mechanisms involved

Acknowledgements

Australian National University

M. Dasgupta, K.J. Cook, I. P. Carter,

D. J. Hinde, Sunil Kalkal, and D.H. Luong

European Centre for Theoretical Studies in Nuclear Physics and Related Areas

Alexis Diaz-Torres

ECT*

Backup slides

Comparison to 7Li $\rightarrow \alpha$ + d

