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Open questions in fusion studies

* Deep sub-barrier fusion hindrance
* Tunnelling of a many-body system
* Coupling to transfer and break up channels

e Fusion with exotic nucle1 (neutron skin, isospin dynamics...)



Outline

* Nucleus-nucleus potential with Pauli repulsion
Impact on deep-sub barrier fusion

* Dynamical effects:

Vibrational couplings

Fusion with exotic nuclei



Nucleus-nucleus potential with Pauli repulsion

Frozen Hartree-Fock (FHF)
Brueckner et al., PR 173, 944 (1968)

= No Pauli
Density-Constrained Frozen Hartree-Fock (DCFHF)

Simenel, Umar et al., in preparation

=» Includes Pauli



Nucleus-nucleus potential with Pauli repulsion
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Nucleus-nucleus potential with Pauli repulsion
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Vibrational couplings

were shown (25) to give rise to a Gaussian distributic

Sub-barrier fusion

enhancement due to L
dynamical couplings:

- Low-lying vibrations

- Rotational states
- Transfer

Can we confirm this interpretation of sub-barrier fusion enhancement with
microscopic calculations?

See Dasgupta et al., Annu. Rev. Nucl. Part. Sci. 48, 401 (1998) - Review



Vibrational couplings
Time-dependent Hartree-Fock

Ca+4Ca
E,_ =533 MeV

Simenel et al., PRC 88, 043604 (2013)



Vibrational couplings
Time-dependent Hartree-Fock

4OC a_|_56Ni
E..=74.2 MeV ! “Ca

Octupole strength

TDHF (=RPA) vibrational spectra (octupole)



Vibrational couplings
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Fusion with exotic nuclei
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Fusion with exotic nuclei
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Fusion with exotic nuclei

Neutron skin reduces the bare
barrier

Washed out by dynamics
Dynamics increases Vg for A>50
Charge transfer affects Coulomb
Isospin equilibration

Density-Constrained TDHF
Godbey, Umar, CS, in preparation

rig. 2. (LOUIUL VLLIC) rolr uIe U+ "D dYSICI,
isoscalar DC-TDHF potentials. The shaded region c
the reduction originating from the isovector contribut
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to the interaction barrier without the Coulomb potentic

As an example of a more asymmetric system w
calculations for the '°0+?%Pb system. In Fig.
the same quantities as in Fig.1. The TDHF
was E. .. = 75MeV. Here we see a substantial ¢
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In summary, we have developed a microscopic
study the effect of isospin dynamics on fusion t
have shown that for most systems isovector dyna
in the thinning of the barrier thus enhancing the
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Conclusions

- Do not forget Pauli
- Do not forget microscopic
- Do not forget dynamics

Perspectives

- Many-body tunnelling
- Dissipation and transfer in Coupled-Channels
- Sensitivity of the force
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TDHF for heavy-ion collisions

- Occupied states
HF caICUIathHS Of the ccupied siaites

collision partners

Energy density functional
(Skyrme SLy4d) from

structure only

C.S., Lacroix, Avez, «Quantum Many-Body Dynamics: applications
to nuclear reactions» (VDM Verlag) 2010



TDHF for heavy-ion collisions

Initial state

Galilean boost

(l)/>

C.S., Lacroix, Avez, «Quantum Many-Body Dynamics: applications
to nuclear reactions» (VDM Verlag) 2010



Fusion

Fusion barrier
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Simenel et al.. PRC 88. 043604 (2013)



