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•  Deep sub-barrier fusion hindrance 

•  Tunnelling of a many-body system 

•  Coupling to transfer and break up channels 

•  Fusion with exotic nuclei (neutron skin, isospin dynamics…) 
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The Pauli exclusion principle induces a repulsion between composite systems of identical fermions such as
colliding atomic nuclei. Our goal is to study how heavy-ion fusion is impacted by Pauli repulsion. We propose a
new microscopic approach, the density-constrained frozen Hartree-Fock method, to compute the bare potential
including the Pauli exclusion principle exactly. Coupled-channel calculations show a reduction of fusion cross-
section around the barrier due to Pauli repulsion, leading to a good agreement with the experimental fusion
cross-sections for up to eight orders of magnitude. Pauli repulsion provides a plausible explanation for the
long-standing deep sub-barrier fusion hindrance problem.

The idea that identical fermions cannot occupy the same
quantum state was proposed by Stoner [1] and generalized by
Pauli [2]. Known as the Pauli exclusion principle, it was at
first empirical, but is now explained by the spin-statistic the-
orem in quantum field theory [3, 4]. The importance of the
Pauli exclusion principle cannot be overstated. For instance,
it is largely responsible for the stability of matter against col-
lapse, as demonstrated by the existence of white dwarfs. It
also generates a repulsion between composite systems of iden-
tical fermions at short distance. For instance, it repels atomic
electron clouds in ionic molecules due to the fermionic nature
of the electron. Another example is the hard-core repulsion
between two nucleons induced by identical quarks of the same
color present in both nucleons. Naturally, a similar effect is
expected to occur between atomic nuclei which are compos-
ite systems of nucleons. Indeed, it has been predicted that
the Pauli exclusion principle should induce a repulsion (called
“Pauli repulsion” hereafter) between strongly overlapping nu-
clei [5].

The Pauli repulsion should then be included in the nucleus-
nucleus potential used to model reactions such as (in)elastic
scattering, (multi)nucleon transfer, and fusion. However,
Pauli repulsion is usually neglected in these models: it has
been argued that the outcome of a collision between nuclei is
mostly determined at a distance where the nuclei do not over-
lap much and thus the effects of the Pauli exclusion princi-
ple are minimized. This argument is based on the assumption
that nuclei do not necessarily probe the inner part of the fu-
sion barrier induced by the competition between Coulomb re-
pulsion and strong nuclear attraction. However, at energies
well above the barrier, the system could reach more com-
pact shapes where one cannot neglect the effect of the Pauli
principle anymore, as was shown by several authors in the
1970’s [5–9]. Similarly, for deep sub-barrier energies the in-
ner turning-point of the fusion barrier entails significant over-
lap between the two nuclei [10, 11].

Using a realistic approach to fusion, based on microscopic
and coupled-channel (CC) calculations, we show that, in fact,
the Pauli repulsion plays an important role on fusion from
deep sub-barrier to above barrier energies. In particular, it
provides a natural explanation for the experimentally observed

deep sub-barrier fusion hindrance [12–14] (see Ref. [15] for
a review) which has led to various theoretical interpretations
[13, 16–21], although none of them directly consider Pauli re-
pulsion as a possible mechanism.

In order to investigate the effect of Pauli repulsion on
heavy-ion fusion, we introduce a novel microscopic method
called density-constrained frozen Hartree-Fock (DCFHF) to
compute the interaction between nuclei while accounting ex-
actly for the Pauli exclusion principle between nucleons. The
microscopically derived bare nucleus-nucleus potential in-
cluding Pauli repulsion is then used in CC calculations. As
an example, 40Ca+40Ca, 48Ca+48Ca and 16O+208Pb fusion
cross-sections are computed without any parameter adjust-
ment, and compared with experimental data.

To avoid the introduction of new parameters, we adopt the
idea of Brueckner et al. [22] to derive the bare potential from
an energy density functional (EDF) E[r] written as an integral
of an energy density H [r(r)], i.e.,

E[r] =
Z

dr H [r(r)] . (1)

The bare potential is obtained by requiring frozen ground-
state densities ri of each nucleus (i = 1,2) which we com-
pute using the Hartree-Fock (HF) mean-field approxima-
tion [23, 24]. The Skyrme EDF [25] is used both in HF calcu-
lations and to compute the bare potential. It accounts for the
bulk properties of nuclear matter such as its incompressibility
which is crucial at short distances [16, 22, 26]. Neglecting the
Pauli exclusion principle between nucleons in different nuclei
leads to the usual frozen Hartree-Fock (FHF) potential [27–
30]

VFHF(R) =
Z

dr H [r1(r)+r2(r�R)]�E[r1]�E[r2], (2)

where R is the distance vector between the centers of mass of
the nuclei. The FHF potential, assumed to be central, can then
directly be used to compute fusion cross-sections in CC calcu-
lations accounting for dynamical reorganization of the nuclei
due to collective excitations [31–33] (see [34] for a review of
the CC method).
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Our new DCFHF method is the static counter-part of the
density-constrained time-dependent Hartree-Fock approach
developed to extract the nucleus-nucleus potential of dynami-
cally evolving systems [35]. In particular, this approach shows
that the Pauli exclusion principle splits orbitals such that some
states contribute attractively (bounding) and some repulsively
(antibounding) to the potential [36]. In the present method,
it is important that the nuclear densities remain frozen as the
densities of the HF ground-states of the collision partners in
order to extract the bare potential without polarization effects,
which are included in a second step via the CC calculations.
Consequently, the DCFHF approach facilitates the compu-
tation of the bare potential by using the self-consistent HF
mean-field with exact frozen densities. The Pauli exclusion
principle is included exactly by allowing the single-particle
states, comprising the combined nuclear density, to reorganize
to attain their minimum energy configuration and be properly
antisymmetrized as the many-body state is a Slater determi-
nant of all the occupied single-particle wave-functions. The
HF minimization of the combined system is thus performed
subject to the constraint that the local proton (p) and neutron
(n) densities do not change:

d h H � Â
q=p,n

Z
dr lq(r) [r1q(r)+r2q(r�R)] i= 0 , (3)

where the ln,p(r) are Lagrange parameters at each point of
space constraining the neutron and proton densities. This
equation determines the state vector (Slater determinant)
|F(R)i. The DCFHF potential, assumed to be central, is then
defined as

VDCFHF(R) = hF(R)|H|F(R)i�E[r1]�E[r2] . (4)

Calculations were done in a three-dimensional Cartesian
geometry with no symmetry assumptions using a static ver-
sion of the code of Ref. [42] and using the Skyrme SLy4d
interaction [43] which has been successful in describing var-
ious types of nuclear reactions [30]. The three-dimensional
Poisson equation for the Coulomb potential is solved by using
Fast-Fourier Transform techniques and the Slater approxima-
tion is used for the Coulomb exchange term. The static HF
equations and the DCFHF minimizations are implemented us-
ing the damped gradient iteration method. The box size used
for all the calculations was chosen to be 60⇥ 30⇥ 30 fm3,
with a mesh spacing of 1.0 fm in all directions. These val-
ues provide very accurate results due to the employment of
sophisticated discretization techniques [44, 45].

The FHF (solid line) and DCFHF (dashed line) potentials
are shown in Figs. 1(a-c) for 16O+208Pb, 40Ca+40Ca, and
48Ca+48Ca systems, respectively. We observe that the Pauli
exclusion principle (present only in DCFHF) induces a re-
pulsion at short distance in the three systems. The resulting
effects are negligible outside the barrier and relatively mod-
est near the barrier, with an increase of the barrier height by
⇠ 1� 2% and a reduction of its radius by ⇠ 2� 4% due to
Pauli repulsion. However, the impact is more important in the

inner barrier region, with the production of a potential pocket
at short distance. As a result, the barrier width is increased.
Pauli repulsion is then expected to reduce the sub-barrier tun-
neling probability as the latter decreases exponentially with
the barrier width.

The Pauli repulsion potential can be extracted from
VPauli(R) = VDCFHF(R)�VFHF(R). It is plotted in Fig. 2 as
a function of R�RFHF

B where the FHF barrier radius RFHF
B is

used as a reference. An exponential decrease is observed in
all systems. A shift is also observed between the calcium sys-
tems, which is essentially due to the neutron skin in 48Ca in-
creasing RB. The exponential decrease can be explained with
a simple model for the 48Ca+48Ca system since it is a sym-
metric system and the density at the surface of 48Ca is essen-
tially determined by the 1 f7/2 neutrons which are not affected
by long-range Coulomb interaction. In this case, the behav-
ior of the density at large distance r can be approximated by
r(r) ⇠ e�2k0r

(k0r)2 (see, e.g., [46]), where k0 =
p
�2me0/h̄, m is

the nucleon mass, and e0 ' �9.55 MeV is the energy of the
1 f7/2 neutron orbital in our HF calculations. The Pauli re-
pulsion is expected to go as the square of the overlap of the
wave-functions [5], leading to

VPauli(R)⇠

�����

Z
dr

e�k0r

r
e�k0|R�r|

|R� r|

�����

2

⇠ e�2k0R

R4 , (5)

for large R. This expression is used to fit VPauli for R > RFHF
B

(with only the magnitude of the potential as a free parameter).
The result, shown with a dotted-dashed line in Fig. 2, gives
an excellent reproduction of the form of the potential down to
⇠ 2 fm inside the barrier.

In principle, the Pauli repulsion is expected to be energy
dependent. One source of energy dependence is the dimin-
ishing of the overlap between wave functions with relative ki-
netic momentum at higher energies reducing the Pauli repul-
sion [5, 6, 8, 47]. Other sources are the dependence of the EDF
on the current density (needed for Galilean invariance) [6] and
non-local effects of the Pauli exclusion principle leading to an
energy dependence of the local equivalent potential [48, 49].
These effects, however, are expected to impact the Pauli re-
pulsion at energies much higher than the barrier, and can then
be neglected in near barrier fusion studies.

We have also tested other methods to account for Pauli re-
pulsion in the bare potential. For instance, antisymmetrizing
overlapping ground-state wave-functions [5–7] can be done
with a Gram-Schmidt procedure. Although the resulting po-
tential properly accounts for the Pauli exclusion principle,
it leads to much higher repulsion as illustrated in Fig. 1(b)
(dotted-dashed line) for the 40Ca+40Ca system in which the
potential pocket and therefore the fusion barrier, simply dis-
appear. Let us use a simple model to explain the origin of this
large repulsion. Consider two single-particle wave functions
j1,2 belonging to the HF ground-states of the two different
nuclei and which have a small overlap in the neck region at
r0 only: j⇤

1 (r)j2(r) ' ad (r� r0). By definition, the total
frozen density of these two nucleons is rF = |j1|2 + |j2|2.
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FIG. 1. (Color online) (a-c) Nucleus-nucleus potential from FHF (solid line) and DCFHF (dashed line) together with its Woods-Saxon fit
(dotted line). Fusion cross-sections from the CCFULL code [37] are plotted in logarithmic (d-f) and linear scales (g-i) using the FHF (solid line)
and DCFHF (dashed line) potentials. Cross-sections with the DCFHF potential are not shown above 59 MeV in panel (h) due to numerical
instabilities visible in linear scale. Experimental data are from Refs. [13, 38–41].
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The evaluation of observables, however, requires antisym-

metrized wave-functions such as j̃± = N±(j1 ± j2) with
normalization coefficients N± = (2±a ±a⇤)�1/2 and over-
laps hj̃�|j̃+i = 0. The corresponding density reads r̃ =
|j̃+|2 + |j̃�|2 ' rF � 1

2 (a + a⇤)2d (r � r0). It is reduced
in the neck compared to the frozen density and thus leads
to a smaller nuclear attraction between the nuclei or, equiv-
alently, to a spurious repulsion between the fragments as seen
in Fig. 1(b). Naive antisymmetrization procedures are then not
compatible with the frozen density picture. This was also rec-
ognized in the earlier work concerning a-nucleus scattering
studies [50], where specialized normalization operators were
developed to reconstruct the states following a Gram-Schmidt
orthogonalization. However, these methods could only be ap-
plied using semi-analytic methods. The DCFHF achieves this
without any approximation.

Let us now discuss another traditional method which is to
account for Pauli repulsion simply by increasing the kinetic
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FIG. 2. (Color online) Pauli repulsion potential extracted from the
difference between the DCFHF and FHF potentials. The dotted-
dashed line is obtained from Eq. (5) (see text).

The evaluation of observables, however, requires antisym-

metrized wave-functions such as j̃± = N±(j1 ± j2) with
normalization coefficients N± = (2±a ±a⇤)�1/2 and over-
laps hj̃�|j̃+i = 0. The corresponding density reads r̃ =
|j̃+|2 + |j̃�|2 ' rF � 1

2 (a + a⇤)2d (r � r0). It is reduced
in the neck compared to the frozen density and thus leads
to a smaller nuclear attraction between the nuclei or, equiv-
alently, to a spurious repulsion between the fragments as seen
in Fig. 1(b). Naive antisymmetrization procedures are then not
compatible with the frozen density picture. This was also rec-
ognized in the earlier work concerning a-nucleus scattering
studies [50], where specialized normalization operators were
developed to reconstruct the states following a Gram-Schmidt
orthogonalization. However, these methods could only be ap-
plied using semi-analytic methods. The DCFHF achieves this
without any approximation.

Let us now discuss another traditional method which is to
account for Pauli repulsion simply by increasing the kinetic
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2 (a + a⇤)2d (r � r0). It is reduced
in the neck compared to the frozen density and thus leads
to a smaller nuclear attraction between the nuclei or, equiv-
alently, to a spurious repulsion between the fragments as seen
in Fig. 1(b). Naive antisymmetrization procedures are then not
compatible with the frozen density picture. This was also rec-
ognized in the earlier work concerning a-nucleus scattering
studies [50], where specialized normalization operators were
developed to reconstruct the states following a Gram-Schmidt
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FIG. 2. (Color online) Pauli repulsion potential extracted from the
difference between the DCFHF and FHF potentials. The dotted-
dashed line is obtained from Eq. (5) (see text).

The evaluation of observables, however, requires antisym-

metrized wave-functions such as j̃± = N±(j1 ± j2) with
normalization coefficients N± = (2±a ±a⇤)�1/2 and over-
laps hj̃�|j̃+i = 0. The corresponding density reads r̃ =
|j̃+|2 + |j̃�|2 ' rF � 1

2 (a + a⇤)2d (r � r0). It is reduced
in the neck compared to the frozen density and thus leads
to a smaller nuclear attraction between the nuclei or, equiv-
alently, to a spurious repulsion between the fragments as seen
in Fig. 1(b). Naive antisymmetrization procedures are then not
compatible with the frozen density picture. This was also rec-
ognized in the earlier work concerning a-nucleus scattering
studies [50], where specialized normalization operators were
developed to reconstruct the states following a Gram-Schmidt
orthogonalization. However, these methods could only be ap-
plied using semi-analytic methods. The DCFHF achieves this
without any approximation.

Let us now discuss another traditional method which is to
account for Pauli repulsion simply by increasing the kineticPauli	repulsion	
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dashed line is obtained from Eq. (5) (see text).
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FIG. 2. (Color online) Pauli repulsion potential extracted from the
difference between the DCFHF and FHF potentials. The dotted-
dashed line is obtained from Eq. (5) (see text).

The evaluation of observables, however, requires antisym-

metrized wave-functions such as j̃± = N±(j1 ± j2) with
normalization coefficients N± = (2±a ±a⇤)�1/2 and over-
laps hj̃�|j̃+i = 0. The corresponding density reads r̃ =
|j̃+|2 + |j̃�|2 ' rF � 1

2 (a + a⇤)2d (r � r0). It is reduced
in the neck compared to the frozen density and thus leads
to a smaller nuclear attraction between the nuclei or, equiv-
alently, to a spurious repulsion between the fragments as seen
in Fig. 1(b). Naive antisymmetrization procedures are then not
compatible with the frozen density picture. This was also rec-
ognized in the earlier work concerning a-nucleus scattering
studies [50], where specialized normalization operators were
developed to reconstruct the states following a Gram-Schmidt
orthogonalization. However, these methods could only be ap-
plied using semi-analytic methods. The DCFHF achieves this
without any approximation.

Let us now discuss another traditional method which is to
account for Pauli repulsion simply by increasing the kineticPauli	repulsion	

3

-5 0 5
Ec.m.-VB (MeV)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

d[
ln

(σ
fu

s.E)
]/d

E

FHF, uncoupled, shifted
DCFHF, uncoupled, shifted

-10 -5 0 5
Ec.m. (MeV)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

d[
ln

(σ
fu

s.E)
]/d

E

FHF, uncoupled, shifted
DCFHF, uncoupled, shifted

70 75 80 85
Ec.m. (MeV)

10-4

10-3

10-2

10-1

100

101

102

103

σ
fu

s. (m
b)

Morton et al. 1999
Dasgupta et al. 2007
FHF (3-)
DCFHF (3-)

46 48 50 52 54 56 58 60
Ec.m. (MeV)

10-3

10-2

10-1

100

101

102

103

σ
 (m

b) Stefanini et al. 2009
FHF (3-,2+)
DCFHF (3-,2+)

6 8 10 12 14 16 18 20
R (fm)

30

35

40

45

50

55

60

65

V
 (M

eV
)

FHF
DCFHF
WS fit
Gram-Schmidt
no spin-orbit

48 50 52 54 56 58 60 62
Ec.m. (MeV)

10-2

10-1

100

101

102

103

σ
 (m

b) Aljuwair et al. 1984
Montagnoli et al. 2012
FHF (3-,2+)
DCFHF (3-,2+)

8 10 12 14 16 18 20
R (fm)

25

30

35

40

45

50

55

V
 (M

eV
)

FHF
DCFHF
WS fit

8 10 12 14 16 18 20
R (fm)

50

55

60

65

70

75

80

V
 (M

eV
)

FHF
DCFHF
WS fit

(a) (b) (c)

(d) (e) (f)

(g) (i)

16O+208Pb 40Ca+40Ca 48Ca+48Ca

-5 0 5
Ec.m.-VB (MeV)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

d[
ln

(σ
fu

s.E)
]/d

E

FHF, uncoupled, shifted
DCFHF, uncoupled, shifted

(h)

FIG. 1. (Color online) (a-c) Nucleus-nucleus potential from FHF (solid line) and DCFHF (dashed line) together with its Woods-Saxon fit
(dotted line). Fusion cross-sections from the CCFULL code [37] are plotted in logarithmic (d-f) and linear scales (g-i) using the FHF (solid line)
and DCFHF (dashed line) potentials. Cross-sections with the DCFHF potential are not shown above 59 MeV in panel (h) due to numerical
instabilities visible in linear scale. Experimental data are from Refs. [13, 38–41].

-3 -2 -1 0 1 2
R-RB

FHF (fm)

0.1

1

10

100

V
Pa

ul
i (M

eV
) 16O+208Pb
40Ca+40Ca
48Ca+48Ca

FIG. 2. (Color online) Pauli repulsion potential extracted from the
difference between the DCFHF and FHF potentials. The dotted-
dashed line is obtained from Eq. (5) (see text).
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studies [50], where specialized normalization operators were
developed to reconstruct the states following a Gram-Schmidt
orthogonalization. However, these methods could only be ap-
plied using semi-analytic methods. The DCFHF achieves this
without any approximation.

Let us now discuss another traditional method which is to
account for Pauli repulsion simply by increasing the kinetic
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The evaluation of observables, however, requires antisym-

metrized wave-functions such as j̃± = N±(j1 ± j2) with
normalization coefficients N± = (2±a ±a⇤)�1/2 and over-
laps hj̃�|j̃+i = 0. The corresponding density reads r̃ =
|j̃+|2 + |j̃�|2 ' rF � 1

2 (a + a⇤)2d (r � r0). It is reduced
in the neck compared to the frozen density and thus leads
to a smaller nuclear attraction between the nuclei or, equiv-
alently, to a spurious repulsion between the fragments as seen
in Fig. 1(b). Naive antisymmetrization procedures are then not
compatible with the frozen density picture. This was also rec-
ognized in the earlier work concerning a-nucleus scattering
studies [50], where specialized normalization operators were
developed to reconstruct the states following a Gram-Schmidt
orthogonalization. However, these methods could only be ap-
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without any approximation.
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alently, to a spurious repulsion between the fragments as seen
in Fig. 1(b). Naive antisymmetrization procedures are then not
compatible with the frozen density picture. This was also rec-
ognized in the earlier work concerning a-nucleus scattering
studies [50], where specialized normalization operators were
developed to reconstruct the states following a Gram-Schmidt
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The evaluation of observables, however, requires antisym-

metrized wave-functions such as j̃± = N±(j1 ± j2) with
normalization coefficients N± = (2±a ±a⇤)�1/2 and over-
laps hj̃�|j̃+i = 0. The corresponding density reads r̃ =
|j̃+|2 + |j̃�|2 ' rF � 1

2 (a + a⇤)2d (r � r0). It is reduced
in the neck compared to the frozen density and thus leads
to a smaller nuclear attraction between the nuclei or, equiv-
alently, to a spurious repulsion between the fragments as seen
in Fig. 1(b). Naive antisymmetrization procedures are then not
compatible with the frozen density picture. This was also rec-
ognized in the earlier work concerning a-nucleus scattering
studies [50], where specialized normalization operators were
developed to reconstruct the states following a Gram-Schmidt
orthogonalization. However, these methods could only be ap-
plied using semi-analytic methods. The DCFHF achieves this
without any approximation.

Let us now discuss another traditional method which is to
account for Pauli repulsion simply by increasing the kinetic
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Figure 2 (a) Fusion excitation functions for 16O on Sm isotopes (18) show a marked increase
of cross section with increasing mass number and deformation. (b) The difference in the energy
dependence of the cross sections (19) for the 58Ni+ 58Ni, 58Ni+ 64Ni, and 64Ni+ 64Ni reactions
indicates that transfer of nucleons affects the fusion process. The dashed lines show calculated cross
sections assuming a single barrier at energy B0. The values of E/B0 in (b) have been calculated
scaling the B0 values of Reference 19 by 1.037 to match more recent data.

The excitation function for 58Ni + 64Ni at energies below the Coulomb barrier
was found to decreasemore gradually than for the other two systems, a behavior
that again could not be explained by simple scaling of the isotope sizes. Later
data (20) show some quantitative disagreement but confirm this feature, which
is illustrated in Figure 2b. The fact that among the three systems, 58Ni + 64Ni
is the only one with a positive Q-value transfer reaction, led to the proposal
(21) that specific reaction channels can affect the fusion process.
By the early 1980s there was much compelling evidence that fusion near the

barrier is influenced by intrinsic degrees of freedom of the interacting nuclei,
primarily deformation or low-lying collective excitations but also the exchange
of nucleons between the two nuclei.

2.2 Calculations Including Nuclear Structure Effects
Because observed enhancements were not restricted to reactions with deformed
nuclei, degrees of freedom other than static deformations were also invoked.
Thesewere vibrationalmodes (22, 23), transfer processes (19, 21), and neck for-
mation (24). For an infinite set of degenerate phonon states, surface vibrations
were shown (25) to give rise to a Gaussian distribution of barrier heights. Thus
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FIG. 4. Distance between fragment centers of masses in
40Ca +116Sn central collisions as a function of time. Fusion is
achieved at Ec.m. = 117.4 MeV (solid line) while separation of the
nuclei occurs at Ec.m. = 117.3 MeV (dashed line).

expected that dynamics should in general lower the fusion
barrier [11]. For UNEDF1, the fusion barrier has been lowered
in all cases, however, with a much smaller magnitude for
the most exotic calcium isotopes. Therefore, both interactions
predict that for the most neutron-rich isotopes a dynamical
mechanism occurs which counterbalances the usual lowering
of fusion thresholds due to couplings.

TDHF calculations intrinsically incorporate a wide variety
of dynamical effects, such as couplings to vibration and
transfer channels. It is therefore desirable to investigate how
individual dynamical effects modify the fusion barrier. This
question is addressed in the next two sections.
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to the calcium mass number for the SLy4d (solid lines) and UNEDF1
(dashed lines) parametrizations.

IV. VIBRATIONAL COUPLINGS

Our aim in this section is to investigate the effect of vibra-
tional couplings on the fusion barrier. The TDHF approach
includes all types of dynamical couplings, but only at the
mean-field level, and without the possibility to disentangle
each contribution in a straightforward way. Therefore, we use
a method based on a comparison between standard TDHF and
coupled-channel calculations with frozen HF and explicitly
including particular dynamical modes for example vibrations,
developed in Ref. [46], to investigate the importance of
low-lying vibrations on the fusion barrier. The inputs to enable
couplings to the collective states are obtained from TDHF.

A. Nuclear vibrations

Coupled-channel calculations require knowledge of the
energy of the collective states as well as their transition
strengths. Both quantities can be obtained from TDHF calcu-
lations of a single nucleus [62]. This method has been widely
applied to study giant-resonances [65–67,74,79,80] but more
rarely to low-lying vibrations [46,72,74]. Although TDHF
calculations can be used to study nonlinear vibrations [81,82],
the extraction of the transition strength relies on the linear
regime, in which case it is equivalent to the random-phase
approximation (RPA). Note that TDHF in coordinate space
allows for particle evaporation [83,84] and thus the escape
width is included. The spreading width, however, involves
two-body mechanisms not accounted for in TDHF. As before,
only the initial static pairing correlations are included.

A basic outline of linear response theory follows. Let us
consider a multipole moment Q̂λ of multipolarity λ. The
transition amplitude between the ground state |0⟩ with energy
E0 and the excited state |ν⟩ with energy Eν is defined as
qν = ⟨ν|Q̂λ|0⟩. In order to calculate the transition probability
|qν |2, a small excitation is applied on the nucleus at the initial
time with a boost of the form

|#(0)⟩ = e−iεQ̂λ |0⟩, (3)

where ε is the boost velocity and quantifies the intensity of the
excitation. The boost induces an oscillation of the multipole
moment expectation value which is given by

⟨Q̂λ⟩(t) = −2ε
∑

ν

|qν |2 sin[(Eν − E0)t/!] + O(ε). (4)

The linear regime is obtained by choosing ε small enough so
that ⟨Q̂λ⟩ is linearly proportional to ε. The strength function
is then computed from a sine Fourier transform of ⟨Q̂λ⟩(t)

Qλ(E) = lim
ε→0

−1
π!ε

∫ ∞

0
dt ⟨Q̂λ⟩(t) sin(Et/!) (5)

≃
∑

ν

|qν |2δ[E − (Eν − E0)]. (6)

In practice, ⟨Q̂λ⟩(t) is only computed over a finite time. To
avoid spurious oscillations in the strength function, ⟨Q̂λ⟩(t)
is filtered in the time domain by multiplying it by a scaled
half-Gaussian damping function reaching zero at the end of
the calculation [65]. This damping function adds only a small
width to the peaks in the strength function.

024612-5

-  Neutron	skin	reduces	the	bare	
barrier	

-  Washed	out	by	dynamics	
-  Dynamics	increases	VB	for	A>50	
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barrier [11]. For UNEDF1, the fusion barrier has been lowered
in all cases, however, with a much smaller magnitude for
the most exotic calcium isotopes. Therefore, both interactions
predict that for the most neutron-rich isotopes a dynamical
mechanism occurs which counterbalances the usual lowering
of fusion thresholds due to couplings.
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of dynamical effects, such as couplings to vibration and
transfer channels. It is therefore desirable to investigate how
individual dynamical effects modify the fusion barrier. This
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The linear regime is obtained by choosing ε small enough so
that ⟨Q̂λ⟩ is linearly proportional to ε. The strength function
is then computed from a sine Fourier transform of ⟨Q̂λ⟩(t)

Qλ(E) = lim
ε→0

−1
π!ε

∫ ∞

0
dt ⟨Q̂λ⟩(t) sin(Et/!) (5)

≃
∑

ν

|qν |2δ[E − (Eν − E0)]. (6)

In practice, ⟨Q̂λ⟩(t) is only computed over a finite time. To
avoid spurious oscillations in the strength function, ⟨Q̂λ⟩(t)
is filtered in the time domain by multiplying it by a scaled
half-Gaussian damping function reaching zero at the end of
the calculation [65]. This damping function adds only a small
width to the peaks in the strength function.
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FIG. 8. Proton number probability distributions in the outgoing
TLF in 40Ca +116Sn (a) and 54Ca +116Sn (b) central collisions at an
energy of 99.9% of the TDHF fusion threshold.

resulting proton transfer probabilities are not affected by
pairing correlations so we use the simple projection technique
[96].

All calculations were again made using the SLy4d interac-
tion. The probability distribution of the final proton number
in the targetlike fragment (TLF) is shown in Fig. 8(a) for
40Ca +116Sn and in Fig. 8(b) for 54Ca +116Sn at an energy of
99.9% of the TDHF fusion threshold. As seen in Fig. 8(a),
protons are transferred from the light fragment to the TLF in
40Ca +116Sn with a probability of ∼50%. Conversely Fig. 8(b)
shows that 116Sn loses protons in 54Ca +116Sn, with only
∼20% chance to find a tin fragment in the exit channel.

A signature of transfer reactions can also be obtained from
the average of the number of nucleons in the final fragments,
which is simply determined by integrating the proton and
neutron densities around one fragment in the exit channel.
Figure 9(a) shows both the average proton (ZTLF) and neutron
(NTLF) numbers in the TLF. We observe that ZTLF decreases
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FIG. 9. The average proton (left axis) and neutron number (right
axis) of the TLF. The dashed line and open triangles show the
anticipated ZTLF value assuming the system is fully equilibriated
with the TLF having NTLF = NTLF. The original target Z and N

(horizontal dotted line) are also shown.

while NTLF increases with increasing calcium mass number,
confirming the results in Fig. 8.

The direction of the transfer is determined by a charge
equilibration process where the initial neutron-to-proton ratio
N/Z asymmetry between the fragments is reduced after
contact. This is a manifestation of positive Q values for transfer
reactions induced by the symmetry energy, studied in detail
with TDHF in transfer reactions [99,104]. The dashed line
in Fig. 9 shows the equilibriated numbers of protons for the
given N , assuming that the projectile and target both have the
N/Z of the compound system. This line indicates that, at this
collision energy, the transfer reactions do not fully equilibriate
the reactants. However, it should be regarded as an upper limit
since the equilibration acts to increase binding rather than truly
equilibriate the neutron-to-proton ratio.

The present calculations indicate that neutron transfer is
stronger than proton transfer in this process, resulting in net
mass transfer to the light calcium isotopes and from the heavier
isotopes. As shown in Fig. 3, the rms radii of the neutrons in the
calcium isotopes are generally larger than those for the protons,
making them more accessible for transfer. The influence of
neutron transfers on fusion is not fully understood.

When the proton transfer to calcium occurs, the charge
product of the fragments increases, which in turn increases the
Coulomb repulsion and thus the fusion barrier. This suggests
a possible mechanism for the increase of the fusion threshold
due to dynamical effects in 52,54Ca +116Sn.

An alternative explanation would be that dissipation of the
initial kinetic energy is faster (meaning it occurs at larger
distances) with calcium isotopes with A > 48 due to a larger
level density near the Fermi level and weak neutron binding.
Further studies are required to better understand the role of
transfer and dissipation in the dynamical effects on the fusion
barrier. For instance, a simple proxy to the dissipation can be
obtained in TDHF from the total kinetic energy loss [105] and
from the number of emitted nucleons [106]. More advanced
techniques to extract the energy dissipated into excitation
energies include a macroscopic reduction procedure [107], the
density-constrained TDHF approach [108], and a more general
application of the particle number projection technique [109].

VI. CONCLUSION

A systematic study of fusion barriers in reactions between
a stable target (116Sn) and a chain of calcium projectiles
ranging from stable to unstable neutron-rich isotopes has
been performed using microscopic approaches based on the
Hartree-Fock mean-field approximation.

The bare potential barriers obtained assuming frozen
ground-state densities decrease with the calcium mass number.
The results also show that the development of a neutron skin
for calcium isotopes heavier than 48Ca further decreases the
bare barrier.

However, this static effect on the bare barrier disappears
when dynamic effects are taken into account via the TDHF
approach. The inclusion of dynamical effects globally lowers
the fusion threshold except for reactions with the most exotic
calcium isotopes studied here (52,54Ca). Depending on the
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ponents without the Coulomb contribution. We have also cal-
culated fusion barriers for the 40Ca+4Ca and 48Ca+48Ca sys-
tems, where the isovector contribution is essentially zero. The
c.m. energy used in the TDHF calculations was 55 MeV. For
this system the energy dependence is relatively weak [33, 42].
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FIG. 2. (Color online) For the 16O+208Pb system; (a) Total and
isoscalar DC-TDHF potentials. The shaded region corresponds to
the reduction originating from the isovector contribution to the en-
ergy density. (b) Plotted are the isoscalar and isovector contributions
to the interaction barrier without the Coulomb potential.

As an example of a more asymmetric system we performed
calculations for the 16O+208Pb system. In Fig. 2(a) we plot
the same quantities as in Fig. 1. The TDHF energy used
was Ec.m. = 75 MeV. Here we see a substantial enhancement
of sub-barrier fusion due to the isovector dynamics. Again,
Fig. 2(b) shows the individual isoscalar and isovector contri-
butions to the barrier without the Coulomb interaction. For
this system we have performed further calculations at TDHF
c.m. energies of 90 MeV and 120 MeV. The energy depen-
dence shows that as the beam energy is increased the relative
contribution from the isovector component to the total bar-
rier decreases, while the overall barrier height increases with
increasing energy. At TDHF energies much higher than the
barrier height the total barriers approaches the frozen density
barrier [33, 43]. due to the inability of the system to rearrange
at that time-scale at which time the isovector contribution van-

ish as well.
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FIG. 3. (Color online) For the 40Ca+132Sn system; (a) Total and
isoscalar DC-TDHF potentials. The shaded region corresponds to the
reduction originating from the isovector contribution to the energy
density. (b) Plotted are the isoscalar and isovector contributions to
the interaction barrier without the Coulomb potential.

The above results demonstrate the influence of isovector
dynamics on typical fusion barriers. We next look at Ca+Sn
reactions mentioned earlier. The experimental observation of
a sub-barrier fusion enhancement in the system 132Sn+40Ca
as compared to more neutron-rich system 132Sn+48Ca was
the subject of a previous DC-TDHF study [44], where it was
shown that the fusion barriers for the two systems have essen-
tially the same height but the fusion barrier for the 132Sn+48Ca
system was much wider than that for the 132Sn+40Ca system.
In Fig. 3(a) we plot the total and the isoscalar barrier with the
Coulomb contribution. The shaded region shows the reduc-
tion of the isoscalar barrier due to the isovector contribution.
This behavior is similar to that of the previous two systems
albeit the isovector reduction is somewhat larger as shown
in In Fig. 3(b). We then performed the same calculation for
the 132Sn+48Ca system as shown in Fig. 4. The startling re-
sult is the vanishing of the isovector contribution. With no
isovector reduction the fusion barrier for this system is much
wider than that for the 132Sn+40Ca system for which substan-
tial reduction occurs. The absence of the isovector compo-
nent for the 132Sn+48Ca system could be a reflection of the

4

negative Q�values for neutron pickup. This is the first direct
observation of this phenomena in TDHF calculations. This
also explains why for the 132Sn+48Ca system simply consid-
ering the 2+ and 3� excitations of the target and projectile
in coupled-channel calculations is able to reproduce the sub-
barrier fusion cross-sections, whereas doing the same for the
132Sn+40Ca system grossly under predicts the cross-sections.
In Ref. [26] this was attributed to the presence of significant
transfer, which manifests itself in the isovector dynamics.
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FIG. 4. (Color online) For the 48Ca+132Sn system; (a) Total and
isoscalar DC-TDHF potentials. For this reaction we see no reduction
originating from the isovector contribution to the energy density. (b)
Plotted are the isoscalar and isovector contributions to the interaction
barrier without the Coulomb potential.

In summary, we have developed a microscopic approach to
study the effect of isospin dynamics on fusion barriers. We
have shown that for most systems isovector dynamics results
in the thinning of the barrier thus enhancing the sub-barrier
fusion cross-sections. The isovector reduction effect vanishes
for symmetric systems as well as the 132Sn+48Ca system for
which neutron pickup Q�values are all negative. These re-
sults provide a quantitative measure for the importance of
transfer in sub-barrier fusion reactions. A more detailed study
including cross-section ratios and other systems will be the
subject of a future study.
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In summary, we have developed a microscopic approach to
study the effect of isospin dynamics on fusion barriers. We
have shown that for most systems isovector dynamics results
in the thinning of the barrier thus enhancing the sub-barrier
fusion cross-sections. The isovector reduction effect vanishes
for symmetric systems as well as the 132Sn+48Ca system for
which neutron pickup Q�values are all negative. These re-
sults provide a quantitative measure for the importance of
transfer in sub-barrier fusion reactions. A more detailed study
including cross-section ratios and other systems will be the
subject of a future study.
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