

Microscopic Approach to Heavy-Ion Fusion

Cédric Simenel

Department of Nuclear Physics, ANU (Canberra)

Open questions in fusion studies

- Deep sub-barrier fusion hindrance
- Tunnelling of a many-body system
- Coupling to transfer and break up channels
- Fusion with exotic nuclei (neutron skin, isospin dynamics...)

Outline

- Nucleus-nucleus potential with Pauli repulsion Impact on deep-sub barrier fusion
- Dynamical effects:
 - Vibrational couplings
 - Fusion with exotic nuclei

Frozen Hartree-Fock (FHF)

Brueckner et al., PR 173, 944 (1968)

Density-Constrained Frozen Hartree-Fock (DCFHF)

Simenel, Umar et al., in preparation

FIG. 2. (Color online) Pauli repu difference between the DCFHF dashed line is obtained from Eq. (

The evaluation of observable

s, however, requires antisym-

accol nt for Pauli repulsion simply by increas

The evaluation of observable

developed to reconstruct the states following a G <u>cutha</u> gonalization. However, these methods coul

asing i-analytic methods. The DCFHF ut any approximation.

us now discuss another t tho nt for Pauli repulsion simply by increasin FIG. 2. (Color online) Pauli repu difference between the DCFHF dashed line is obtained from Eq. (

The evaluation of observable Pauli repulsion -> Deep sub-barrier fusion hindrance

difference between the DCFHF dashed line is obtained from Eq.

The evaluation of observable

and FHF potentials. The dotted-

s, however, requires antisym-

orthe gonalization. However, these methods con plied using semi-analytic methods. The DCFH with ut any approximation.

us now discuss another traditional meth Le accol nt for Pauli repulsion simply by increas

Vibrational couplings

were shown (25) to give rise to a Gaussian distributic

Sub-barrier fusion enhancement due to dynamical couplings:

- Low-lying vibrations
- Rotational states
- Transfer

Can we confirm this interpretation of sub-barrier fusion enhancement with microscopic calculations?

See Dasgupta et al., Annu. Rev. Nucl. Part. Sci. 48, 401 (1998) - Review

Vibrational couplings Time-dependent Hartree-Fock

Vibrational couplings Time-dependent Hartree-Fock

TDHF (=RPA) vibrational spectra (octupole)

Vibrational couplings

CS, Umar et al., in preparation

Fusion with exotic nuclei

- Neutron skin reduces the bare barrier
- Washed out by dynamics
- Dynamics increases V_B for A>50

FIG. 5. Bare potential barrier energies from and TDHF fusion thresholds for ${}^{A}Ca + {}^{116}Sn$ are to the calcium mass number for the SLy4d (solid (dashed lines) parametrizations.

Vo-Phuoc, CS, Simpson, PRC 93, 034604 (2016)

Fusion with exotic nuclei

- Neutron skin reduces the bare barrier
- Washed out by dynamics
- Dynamics increases V_B for A>50
- Charge transfer affects Coulomb

FIG. 9. The avera axis) of the TLF. T anticipated \overline{Z}_{TLF} value with the TLF having (horizontal dotted line

40 42

FIG. 5. Bare potential barrier energies from and TDHF fusion thresholds for ${}^{A}Ca + {}^{116}Sn$ are to the calcium mass number for the SLy4d (solic (dashed lines) parametrizations.

Vo-Phuoc, CS, Simpson, PRC 93, 034604 (2016)

Fusion with exotic nuclei

- Neutron skin reduces the bare barrier
- Washed out by dynamics
- Dynamics increases V_B for A>50
- Charge transfer affects Coulomb
- Isospin equilibration

Density-Constrained TDHF Godbey, Umar, CS, in preparation **FIG. 2.** (Color online) For the O+ Fo system; isoscalar DC-TDHF potentials. The shaded region c the reduction originating from the isovector contribut ergy density. (b) Plotted are the isoscalar and isovector to the interaction barrier without the Coulomb potentia

As an example of a more asymmetric system w calculations for the ${}^{16}\text{O}+{}^{208}\text{Pb}$ system. In Fig. the same quantities as in Fig. 1. The TDHF was $E_{\text{c.m.}} = 75$ MeV. Here we see a substantial ϵ of sub-barrier fusion due to the isovector dynan Fig. 2(b) shows the individual isoscalar and isov butions to the barrier without the Coulomb inte

FIG. 4. (Color online) For the ⁴⁸Ca+¹³²Sn system; isoscalar DC-TDHF potentials. For this reaction we see originating from the isovector contribution to the energ Plotted are the isoscalar and isovector contributions to t barrier without the Coulomb potential.

In summary, we have developed a microscopic study the effect of isospin dynamics on fusion b have shown that for most systems isovector dyna in the thinning of the barrier thus enhancing the fusion areas sections. The isovector reduction off

Conclusions

- Do not forget Pauli
- Do not forget microscopic
- Do not forget dynamics

Perspectives

- Many-body tunnelling
- Dissipation and transfer in Coupled-Channels
- Sensitivity of the force

Collaboration

- ANU: Dasgupta, Hinde, McRae, Simenel, Simpson, Vo-Phuoc, Williams
- Vanderbilt: Godbey, Oberacker, Umar
- Strasbourg: Bourgin, Courtin, Haas

TDHF for heavy-ion collisions

HF calculations of the

collision partners

Energy density functional (Skyrme SLy4*d*) from *structure* only

C.S., Lacroix, Avez, «Quantum Many-Body Dynamics: applications to nuclear reactions» (VDM Verlag) 2010

TDHF for heavy-ion collisions

Galilean boost

Initial state

C.S., Lacroix, Avez, «Quantum Many-Body Dynamics: applications to nuclear reactions» (VDM Verlag) 2010

Fusion

Fusion barrier

Experimental barrier distributions

Dasgupta *et al*, Annu. Rev. Nucl. Part. Sci. **48**, 401 (1998)

Dynamical effects on the barrier

C.S. and Avez, IJMPE 17, 31 (2008)

Fusion

Simenel et al., PRC 88, 043604 (2013)