

The 'Exotic Glue' Structure Function

Phiala Shanahan, Will Detmold

Massachusetts Institute of Technology

September 13, 2016

Motivation

Electron Ion Collider: The Next QCD Frontier

...

Understanding the glue that binds us all

'Exotic' Glue in the Nucleus

'Exotic' Glue in the Nucleus

'Exotic' Glue

Contributions to gluon observables that are not from nucleon degrees of freedom.

Exotic glue operator:

operator in nucleon = 0 operator in nucleus $\neq 0$

Jaffe and Manohar (1989)

Leading-twist, double-helicity-flipping structure function $\Delta(x,Q^2)$

- Clear signature for exotic glue in nuclei with spin ≥ 1: NO analogous twist-2 quark PDF → unambiguous
- In single hadrons: gluon transversity structure function
- Experimentally measurable (JLab LOI 2016)
- Moments are calculable using lattice QCD

First Lattice Study: arXiv:1606.04505 (PRD) • First moment of $\Delta(x, Q^2)$ in spin-1 ϕ meson

Double helicity flip amplitude:

$$\Delta(x, Q^2) = A_{+-,-+} = A_{-+,+-}$$

Phiala Shanahan (MIT)

Double helicity flip amplitude:

Photon helicity

$$\Delta(x, Q^2) = A_{+-, -+} = A_{-+, +-}$$

Phiala Shanahan (MIT)

Exotic Glue in the Nucleus

Double helicity flip amplitude:

$$\Delta(x, Q^2) = A_{+-, -+} = A_{-+, +-}$$

Photon helicity Target helicity

Optical theorem, dispersion relation for hadronic forward scatt. amplitude, analytic continuation give **moments**:

Optical theorem, dispersion relation for hadronic forward scatt. amplitude, analytic continuation give **moments**:

Operator Product Expansion to relate to matrix elements of operator

Gluonic Operator

$$\langle pE' | S[G_{\mu\mu_1} \overleftrightarrow{D}_{\mu_3} \dots \overleftrightarrow{D}_{\mu_n} G_{\nu\mu_2}] | pE \rangle$$

$$= (-2i)^{n-2} S[(p_{\mu}E'^*_{\mu_1} - p_{\mu_1}E'^*_{\mu})(p_{\nu}E_{\mu_2} - p_{\mu_2}E_{\nu})$$

$$+ (\mu \leftrightarrow \nu)] p_{\mu_3} \dots p_{\mu_n} \underline{A_n(Q^2)} \dots,$$
Reduced Matrix Element

Optical theorem, dispersion relation for hadronic forward scatt. amplitude, analytic continuation give **moments**:

Operator Product Expansion to relate to matrix elements of operator

$$\begin{array}{c} & \left\langle pE' \left[\overbrace{S[G_{\mu\mu_1} \overleftarrow{D}_{\mu_3} \dots \overrightarrow{D}_{\mu_n} G_{\nu\mu_2}} \right] | pE \right\rangle \\ & \left\langle \overbrace{P} = (-2i)^{n-2} \underbrace{S[(p_{\mu}E'^*_{\mu_1} - p_{\mu_1}E'^*_{\mu})(p_{\nu}E_{\mu_2} - p_{\mu_2}E_{\nu})} \right. \\ & \left[(p_{\mu}E'^*_{\mu_1} - p_{\mu_1}E'^*_{\mu_1})(p_{\nu}E_{\mu_2} - p_{\mu_2}E_{\nu}) \right] \\ & \left[(p_{\mu}E'^*_{\mu_1} - p_{\mu_1}E'^*_{\mu_1})(p_{\nu}E_{\mu_2} - p_{\mu_2}E_{\nu}) \right] \\ & \left[(p_{\mu}E'^*_{\mu_1} - p_{\mu_1}E'^*_{\mu_1})(p_{\nu}E_{\mu_2} - p_{\mu_2}E_{\nu}) \right] \\ & \left[(p_{\mu}E'^*_{\mu_1} - p_{\mu_1}E'^*_{\mu_1})(p_{\nu}E_{\mu_2} - p_{\mu_2}E_{\nu}) \right] \\ & \left[(p_{\mu}E'^*_{\mu_1} - p_{\mu_1}E'^*_{\mu_1})(p_{\nu}E_{\mu_2} - p_{\mu_2}E_{\nu}) \right] \\ & \left[(p_{\mu}E'^*_{\mu_1} - p_{\mu_1}E'^*_{\mu_1})(p_{\nu}E_{\mu_2} - p_{\mu_2}E_{\nu}) \right] \\ & \left[(p_{\mu}E'^*_{\mu_1} - p_{\mu_1}E'^*_{\mu_1})(p_{\nu}E_{\mu_2} - p_{\mu_2}E_{\nu}) \right] \\ & \left[(p_{\mu}E'^*_{\mu_1} - p_{\mu_1}E'^*_{\mu_2})(p_{\mu}E_{\mu_2} - p_{\mu_2}E_{\nu}) \right] \\ & \left[(p_{\mu}E'^*_{\mu_1} - p_{\mu_1}E'^*_{\mu_2})(p_{\mu}E_{\mu_2} - p_{\mu_2}E_{\nu}) \right] \\ & \left[(p_{\mu}E'^*_{\mu_1} - p_{\mu_1}E'^*_{\mu_2})(p_{\mu}E_{\mu_2} - p_{\mu_2}E_{\mu_2}) \right] \\ & \left[(p_{\mu}E'^*_{\mu_1} - p_{\mu_1}E'^*_{\mu_2})(p_{\mu}E_{\mu_2} - p_{\mu_2}E_{\mu_2}) \right] \\ & \left[(p_{\mu}E'^*_{\mu_1} - p_{\mu_2}E_{\mu_2})(p_{\mu}E_{\mu_2} - p_{\mu_2}E_{\mu_2}) \right] \\ & \left[(p_{\mu}E'^*_{\mu_1} - p_{\mu_2}E_{\mu_2})(p_{\mu}E_{\mu_2} - p_{\mu_2}E_{\mu_2}) \right] \\ & \left[(p_{\mu}E'^*_{\mu_2} - p_{\mu_2}E_{\mu_2})(p_{\mu}E_{\mu_2} - p_{\mu_2}E_{\mu_2}) \right] \\ & \left[(p_{\mu}E'^*_{\mu_2} - p_{\mu_2}E_{\mu_2})(p_{\mu}E_{\mu_2} - p_{\mu_2}E_{\mu_2}) \right] \\ & \left[(p_{\mu}E'^*_{\mu_2} - p_{\mu_2}E_{\mu_2})(p_{\mu}E_{\mu_2} - p_{\mu_2}E_{\mu_2})(p_{\mu}E_{\mu_2} - p_{\mu_2}E_{\mu_2}) \right] \\ & \left[(p_{\mu}E'^*_{\mu_2} - p_{\mu_2}E_{\mu_2})(p_{\mu}E_{\mu_2} - p_{\mu_2}E_{\mu_2})(p_{\mu}E_{\mu_2} - p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2} - p_{\mu_2}E_{\mu_2}) \right] \\ & \left[(p_{\mu}E'^*_{\mu_2} - p_{\mu_2}E_{\mu_2})(p_{\mu_2} - p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2} - p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2} - p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2} - p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_2})(p_{\mu_2}E_{\mu_$$

Lattice QCD

Numerical first-principles approach

Discretise space-time (4D box)

Lattice spacing *a*, volume $L^3 \times T$ order $32^3 \times 64 \approx 2 \times 10^6$ lattice sites

Lattice QCD

Numerical first-principles approach

Discretise space-time (4D box) Lattice spacing *a*, volume $L^3 \times T$ order $32^3 \times 64 \approx 2 \times 10^6$ lattice sites

Lattice simulation in spin-1 ϕ meson

Lattice Details

Luscher-Weisz gauge action with a clover-improved quark action

L/a	T/a	eta	am_l	am_s
24	64	6.1	-0.2800	-0.2450
a (fm)	L (fm)	T (fm)	m_π (MeV)	m_K (MeV)
0.1167(16)	2.801(29)	7.469(77)	450(5)	596(6)
m_{ϕ} (MeV)	$m_{\pi}L$	$m_{\pi}T$	$N_{ m cfg}$	$N_{ m src}$
1040(3)	6.390	17.04	1042	10^{5}

- All ϕ polarization states ({1,2,3} or {+,-,0})
 - on-diagonal
 - off-diagonal
- $\bullet\,$ Momenta up to (1,1,1) in lattice units (1 unit \sim 0.4GeV)
- Different discretisations of the operator (different irreps.)

Lattice Details

Luscher-Weisz gauge action with a clover-improved quark action

L/a	SYSTE	am_s		
24	Quark m	-0.2450		
a (fm)	 Volume 	n_K (MeV)		
0.1167(16)	 Discretiz 	596(6)		
$m_{\phi}~({\sf MeV})$	• Renorma	$N_{ m src}$		
1040(3)	6.390	17.04	1042	10^{5}

- All ϕ polarization states ({1,2,3} or {+,-,0})
 - on-diagonal
 - off-diagonal
- $\bullet\,$ Momenta up to (1,1,1) in lattice units (1 unit \sim 0.4GeV)
- Different discretisations of the operator (different irreps.)

Extraction of A_2

We calculate on the lattice:

 $\begin{bmatrix} \frac{C_{3\text{pt}}^{EE'}}{C_{2\text{pt}}^{EE'}} \end{bmatrix} (t_{\text{sink}}, \tau) \propto A_2, \qquad 0 \ll \tau \ll t_{\text{sink}}$

Extraction of A_2 : 3pt/2pt ratio

Extraction of A_2 : 3pt/2pt ratio

Extraction of A_2 : 3pt/2pt ratio

Extraction of A_2 : 3pt/2pt ratio

Extraction of A_2 : 3pt/2pt ratio

Extraction of A_2 : 3pt/2pt ratio

Extraction of A_2 : 3pt/2pt ratio

Extraction of A_2 : 3pt/2pt ratio

Extraction of A_2 : 3pt/2pt ratio

Extraction of A_2 : 3pt/2pt ratio

UNRENORMALISED reduced matrix element: ϕ meson

UNRENORMALISED reduced matrix element: ϕ meson

Explore gluon structure of ϕ meson more generally

Soffer bound for transversity quark distributions:

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \Delta q(x) \right)$$

Explore gluon structure of ϕ meson more generally

Soffer bound for transversity quark distributions:

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \Delta q(x) \right)$$

Direct analogue for leading moments of gluon distributions:

$$|A_2| \le \frac{1}{2}B_2$$

Explore gluon structure of ϕ meson more generally

Soffer bound for transversity quark distributions:

$$|\delta q(x)| \leq \frac{1}{2} \left(q(x) + \Delta q(x) \right)$$

Direct analogue for leading moments of gluon distributions:

$$\begin{array}{ccc}
G_{\mu\mu_1}G_{\nu\mu_2} & G_{\mu_1\alpha}G_{\mu_2}^{\alpha} \\
& & & \\
\hline A_2 & \leq \frac{1}{2}B_2 & \widetilde{G}_{\mu_1\alpha}G_{\mu_2}^{\alpha} \to 0
\end{array}$$

UNRENORMALISED reduced matrix element: ϕ meson

If we assume approx. the same renormalisation for A_2 and B_2 :

First two moments of quark distributions: Soffer bound saturated to 80% (lattice QCD, Diehl *et al.* 2005)

Summary

ROBUST NON-ZERO signal for 'exotic glue' operator in the ϕ meson

Proof of principle: similar signal in a nucleus \Leftrightarrow exotic glue

Explore gluon structure of hadrons more generally e.g., Soffer bound analogue

BUT: SYSTEMATICS IGNORED ⇒ no physically meaningful number (yet)