Probing quasifission in reactions forming Rn nucleus

Shamlath A. Research Scholar

Central University of Kerala

Introduction

- Our goals
- Experimental details
- Results & Discussion
- Conclusion

Heavy-ion fusion-fission reactions

Overcoming the Coulomb barrier Formation of an equilibrated compound nucleus (CN) Statistical decay of the CN Evaporation ◆ Fission

Heavy-ion fusion-fission reactions

 Overcoming the barrier does not guarantee fusion always !!!

Strong hindrance
 to fusion by Non-CN
 process called
 Quasifission (QF)

Heavy-ion fusion-fission reactions

- Factors affecting FF/QF
 - Excitation energy
 - Angular momentum
 - Entrance channel mass asymmetry, $\alpha = (A_T - A_P)/(A_P + A_T)$
 - Nucleus deformation and orientation
 - $Z_P Z_T$

Experimental Probes to study QF

 Study of fission fragment angular distribution Large angular anisotropy for QF
 Fission fragment mass - angle distributions Mass-angle correlations

- Fission fragment mass distribution
 Broader FF Mass Ratio Distributions
- Study of evaporation residue (ER)
 Lower ER yields for QF

Our goals

• Studying the onset of the QF mechanism

• Entrance channel dependence of fusion-fission and QF competition

SystemsExcitation energy range 210 Rn $\rightarrow ~^{16}$ O + 194 PtE* $\rightarrow 40 - 65$ MeV 30 Si + 180 HfE* $\rightarrow 47 - 82$ MeV 208 Rn $\rightarrow ~^{28}$ Si + 180 HfE* $\rightarrow 51 - 106$ MeV

Observables

FF mass-angle and mass ratio distributions.
ER cross-sections.

FF mass distribution measurements

- ${}^{30}\text{Si} + {}^{180}\text{Hf} \rightarrow {}^{210}\text{Rn}$
- General Purpose Scattering Chamber (GPSC)
- Multi Wire Proportional Counters (MWPC)
- Position and timing information
- Collection and Analysis of Nuclear Data using Linux nEtwork (CANDLE)

GPSC

FF mass ratio distribution studies

E. Prasad et al., Phys. Rev. C 81, 054608 (2010), A. Shamlath et al., Nucl. Phys. A 945, 67 (2016).

FF mass-angle distributions (MAD)

¹⁶**O**+¹⁹⁴**Pt**

³⁰Si+¹⁸⁰Hf

No mass-angle correlation

For completely fused system

$$\sigma_{\rm m}^2 = \lambda T + \kappa < l^2 >$$

Saddle point Model

Experimental mass ratio widths for the ³⁰Si +¹⁸⁰Hf and ¹⁶O+¹⁹⁴Pt systems (solid points) compared with the calculations assuming saddle point model (solid lines).

Di-nuclear system (DNS) model calculation

- Theoretical approach to describe and predict the capture, fusion and QF cross sections.
- Interaction with different orientation angles of the deformed nuclei is considered.
- Dependence of barrier on the energy and angular momentum.

•
$$\sigma_{cap} = \sigma_{Fusion} (\sigma_{ER} + \sigma_{FF}) + \sigma_{QF}$$

A.K. Nasirov et al., Eur. Phys. J. A 49 (2013) 147.

Di-nuclear system (DNS) model calculation

Significant QF probability - ³⁰Si+¹⁸⁰Hf reaction

Observations

■ No mass angle correlation.

- The width of the mass ratio distribution increases with an increase in excitation energy.
- At similar excitation energies, the magnitude of σ_m values for the ${}^{30}Si + {}^{180}Hf$ reaction is much higher than that of the ${}^{16}O + {}^{194}Pt$ reaction, forming the same CN ${}^{210}Rn$.
- These observations confirms the presence of Quasifission in ³⁰Si + ¹⁸⁰Hf reaction.

Entrance channel dependence

Experimental Details

HYbrid Recoil mass Analyzer (HYRA) in gas-filled mode

 ΔE -TOF Spectrum

• The energy loss (ΔE) vs TOF spectrum helped in unambiguous identification of ERs from the beam-like and the target-like contaminations.

ER cross section

$$\sigma_{\rm ER} = \frac{\mathbf{Y}_{\rm ER}}{\mathbf{Y}_{\rm mon}} \left(\frac{d\sigma}{d\Omega}\right)_{\rm R} \mathbf{\Omega}_{\rm M} \frac{1}{\varepsilon_{\rm HYRA}}$$

 \rightarrow ER cross section

- \rightarrow ER yield at the focal plane
- \rightarrow Yield in the monitor detector
- \rightarrow Solid angle subtended by the monitor detector
- \diamond $(d\sigma/d\Omega)_{R} \rightarrow$ Differential Rutherford scattering cross section
 - in the laboratory system.

 $\bullet \sigma_{\rm ER}$

 $\mathbf{A} \mathbf{Y}_{\mathbf{ER}}$

♦ Y_{mon}

 $\bullet \Omega_{\rm M}$

 \rightarrow HYRA transmission efficiency

Calibration system - ³⁰Si+¹⁸⁶W

A.C. Berriman et al., Nature (London) 413 (2001) 144, D. J. Hinde et al., J. Nucl. Radiochem. Sci. 3, 31 (2002).

E. Prasad et al., Phys. Rev. C. 84, 064606 (2011).

DNS Results

D. A. Mayorov et al., Phys. Rev. C. 92, 054601 (2015).

^{28,30}Si+¹⁸⁰Hf **ER** Cross Section

DNS Results

The model analysis are in agreement with the experimental observations

To be published

Clear signature of QF process in ^{28,30}Si + ¹⁸⁰Hf reactions

- Studied FF mass-angle and mass distributions for ³⁰Si+¹⁸⁰Hf system & compared with ¹⁶O+¹⁹⁴Pt system, both populating same CN at similar excitation energies.
- ER cross sections are also measured.
- Different theoretical model calculations are also performed.
- Presence of Quasifission in more symmetric systems.
- Entrance channel dependence of QF is confirmed.

<u>Collaborators</u>

Central University of Kerala	 Dr. E. Prasad, Supervisor(Australian National University) P. V. Laveen, M. Shareef
Inter University Accelerator Centre	 N. Madhavan, S. Nath, J. Gehlot, A. Jhingan T. Varughese, Tathagata Banerjee
University of Mumbai	• S. Kailas
University of Calicut	• A. M. Vinodkumar
Joint Institute for Nuclear Research	• A. K. Nasirov
University of Messina	• G. Giardina, G. Mandaglio

Thank you

Fusion probability, P_{cN}

• The probability that the projectile-target system will form a completely fused system rather than reseparating (quasifission)

DNS Results

Butt et al., Phy Rev. C 66, 044601 (2002), D. A. Mayorov et al., Phys. Rev. C 92, 054601 (2015).

DNS Results

