

International Nuclear Physics Conference Adelaide Convention Centre, Australia 11-16 September 2016

Solitonic Excitations in Collisions of Superfluid Nuclei

Kazuyuki Sekizawa¹

in collaboration with

Gabriel Wlazłowski^{1,2}

Piotr Magierski^{1,2}

Faculty of Physics, Warsaw University of Technology¹ Department of Physics, University of Washington²

What are the effects of pairing on reaction dynamics?

More adiabatic dynamics
Neck formation
Contact time
Scattering angle
Total kinetic energy
Transfer processes
...

Dynamical excitations of the pairing field

K. Sekizawa

Solitonic Excitations in Collisions of Superfluid Nuclei

What we have investigated

"Solitonic excitations" in cold atomic gases

Result of TDSLDA simulation:

Phase discontinuity creates a vortex ring which decays into a vortex line

 $32 \times 32 \times 128$ lattice

 $N \sim 1000$

"Solitonic excitations" in cold atomic gases

The cascades of solitonic excitations have been identified experimentally

M.J.H. Ku, B. Mukherjee, T. Yefsah, and M.W. Zwierlein, Phys. Rev. Lett. 116, 045304 (2016)

Method: TDSLDA (Time-Dependent Superfluid Local Density Approximation

3D, TDSLDA calculations were performed for various phase differences

TDSLDA equations (formally equivalent to TDHFB or TDBdG equations)

$$i\hbar \frac{\partial}{\partial t} \begin{pmatrix} u_i(\boldsymbol{r},t) \\ v_i(\boldsymbol{r},t) \end{pmatrix} = \begin{pmatrix} h(\boldsymbol{r},t) & \Delta(\boldsymbol{r},t) \\ \Delta^*(\boldsymbol{r},t) & -h(\boldsymbol{r},t) \end{pmatrix} \begin{pmatrix} u_i(\boldsymbol{r},t) \\ v_i(\boldsymbol{r},t) \end{pmatrix}$$

$$h$$
 : single-particle Hamiltonian EDF:

 $\Delta({m r}) = -g_{
m eff}({m r})
u_c({m r})$: pairing field

 ν : anomalous density

Normal part: FaNDF⁰ w/o LS

Pairing part:
$$\mathcal{E}_{ ext{pair}}(m{r}) = gig(|
u_n(m{r})|^2 + |
u_p(m{r})|^2ig)$$

3D box w/o any symmetry restrictions ($\Delta x = 1.25$ fm):

 E_c =100 MeV # of qpwf ~ 15,000 several hours w/ 32 GPUs for b=0 (on our GPU cluster at WUT) $64 \times 20 \times 20 \quad (80 \,\text{fm} \times 25 \,\text{fm} \times 25 \,\text{fm}) \qquad \text{for } b = 0$ $64 \times 48 \times 20 \quad (80 \,\text{fm} \times 60 \,\text{fm} \times 25 \,\text{fm}) \qquad \text{for } b \neq 0$

FaNDF⁰: S.A. Fayans et al., JETP Letters 68(1998)169; NPA676(2000)49.
TDSLDA: G. Wlazłowski et al., arXiv:1606.04847 (2016).
Static calc: S. Jin et al., arXiv:1608.03711 (2016).
Renormalization: A. Bulgac and Y. Yu, PRL88(2002)042504; PRC65(2002)051305(R).

Results: ²⁴⁰Pu+²⁴⁰Pu head-on collisions

Additional energy is necessary to attach two superfluids with different phases

The additional energy cost (derived from Ginzburg-Landau theory) \succ $E = \frac{S}{L} \frac{\hbar^2}{2m} n_s \sin^2 \frac{\Delta \varphi}{2}$ n_s, φ_2 n_s, φ_1 S: Attaching area *The energy does not depend on the absolute value of Δ ! *L*: Length scale over which the phase varies e.g.) $S=\pi R^2$, $L \sim R=6$ fm, $n_s=0.08$ fm⁻³ $\rightarrow E \sim 30$ MeV *n*_s: Superfluid density

Solitonic excitations

Additional energy is necessary to attach two superfluids with different phases

The phase difference suppresses the fusion reaction

The phase difference suppresses the fusion reaction

Results: ⁹⁰Zr+⁹⁰Zr head-on collisions

The phase difference suppresses the fusion reaction

 $*E_{\text{fusion}}$: the lowest energy at which we observed fusion reaction

Results: ⁹⁰Zr+⁹⁰Zr non-central collisions

Suppression of the neck formation results in different contact time & scattering angle

Summary

- ✓ Additional energy is necessary (the barrier height is effectively increased)
- \checkmark Total kinetic energy is affected by several tens of MeV
- $\checkmark\,$ Fusion reaction is substantially hindered
- ✓ Neck formation is suppressed
- ✓ Scattering angle (contact time) can be changed

Kazuyuki Sekizawa Research Assistant Professor Faculty of Physics, Warsaw University of Technology ulica Koszykowa 75, 00-662 Warsaw, Poland sekizav@ if.pw.edu.pl http://sekizawa.fizyka.pw.edu.pl