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1.  Introduction
++ Exotic hadrons and their structure ++

   ■ Exotic hadrons --- not same quark component as ordinary hadrons
      = not qqq nor qq. 

   --- Actually some hadrons cannot be 
       described by the quark model.
     □ Do exotic hadrons really exist ?

                        ■ Hadronic molecules should be
                           unique, because they are 
                           composed of hadrons themselves,
                           which are color singlet states.
                              --> Large spatial size, compositeness, ...

Penta-quarks Tetra-quarks Hybrids Glueballs Hadronic
molecules

...

Ordinary hadrons
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++ Hadronic molecules and quantum mechanics ++
   ■ An example of hadronic molecule: deuteron.

     □ Deuteron is a proton-neutron bound state.  <-- Who proved this ?
     --- Weinberg proved this by using general wave equations 
         in quantum mechanics in the weak binding limit (BE << Etypical).
         <-- Without using QCD !
     □ Introduce field renormalization constant Z:
     --> “Bare” component | B0 > in the total wave function | B >. 

                                                                     --> Consistent with Z ~ 0 !
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NN phase shift

Wave function 
of deuteron

Machleidt, Phys. Rev. C63 
(2001) 024001.

s-wave

d-wave

Weinberg (1965).
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++ Hadronic molecules and quantum mechanics ++
   ■ An example of hadronic molecule: deuteron.

     □ Lesson: In a similar manner, we can study the structure of 
                       general hadronic molecules.
     --- We can use quantum mechanics to investigate them:
          Two-body wave function, its norm = compositeness, 
          scattering amplitude, ...

   <--> In contrast, for hadrons of other configurations, we have to treat
           color multiplet states explicitly and appropriately.
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++ How to clarify their structure ? ++
   ■ How can we use quantum mechanics
      to clarify the structure of 
      hadronic molecule candidates ?
   ■ We evaluate the wave function of
      hadron-hadron composite contribution.
   --- cf. Wave function for relative motion of 
             two nucleons inside deuteron.

   ■ How to evaluate the wave function ?
   <-- We employ a fact that the two-body wave function appears 
         in the residue of the scattering amplitude of the two particles 
         at the resonance pole.
     □ The WF and compositeness (= norm) are automatically scaled. 
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++ How to calculate the wave function ++
   ■ There are several approaches to calculate the wave function.
      Ex.)  A bound state in a NR single-channel problem. 
     □ Usual approach: Solve the Schrödinger equation.

     --- Wave function in coordinate / momentum space:

     --> After solving the Schrödinger equation, 
          we have to normalize the wave function by hand.
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<-- We require !or

--- | q > is an eigenstate of 
    free Hamiltonian H0:

2.  Wave functions from amplitude



++ How to calculate the wave function ++
   ■ There are several approaches to calculate the wave function.
      Ex.)  A bound state in a NR single-channel problem. 
     □ Our approach: Solve the Lippmann-Schwinger 
        equation at the pole position of the bound state.

     --- Near the resonance pole position Epole, amplitude is dominated 
          by the pole term in the expansion by the eigenstates of H as

     --- The residue of the amplitude 
          at the pole position has information on the wave function !
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2.  Wave functions from amplitude



++ How to calculate the wave function ++
   ■ There are several approaches to calculate the wave function.
      Ex.)  A bound state in a NR single-channel problem. 
     □ Our approach: Solve the Lippmann-Schwinger 
        equation at the pole position of the bound state.
     --- The wave function can be extracted from 
         the residue of the amplitude at the pole position:

     --> Because the scattering amplitude cannot be freely scaled
          due to the optical theorem, the wave function from the residue
          of the amplitude is automatically scaled as well !

     --> Therefore, from hadron-hadron scattering amplitudes with
          resonance poles, we can calculate their two-body wave function.
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<-- We obtain !
E. Hernandez and A. Mondragon,

Phys. Rev. C29 (1984) 722.

If purely molecule -->

2.  Wave functions from amplitude

<-- Off-shell Amp.



++ Example: Stable bound state ++
   ■ A Λ hyperon in A = 40 nucleus.
   --> Calculate wave functions in 2 ways.
     1. Solve Schrödinger equation:

     --> Normalize ψ by hand !

     2. Solve Lippmann-Schwinger
         equation:

     --> Extract WF from the residue:

     --- Without normalizing by hand !
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-->

Woods-Saxon 
potential

2.  Wave functions from amplitude



++ Example: Stable bound state ++
   ■ A Λ hyperon in A = 40 nucleus.
   --> Calculate wave functions in 2 ways.
     1. Solve Schrödinger equation:

     --> Normalize ψ by hand !

     2. Solve Lippmann-Schwinger
         equation:

     --> Extract WF from the residue:

     --- Without normalizing by hand !
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-->

Woods-Saxon 
potential

2.  Wave functions from amplitude

□ In 1st way: Points.
       2nd way: Lines.
□ Exact coincidence !
--- We obtain auto-
     matically normalized 
     WF from the Amp. !



++ Example: Stable bound state ++
   ■ We define the compositeness X as the norm of the wave function:

   --- In the following, we calculate X from the scattering amplitude.

     □ The compositeness is unity for energy independent interaction.

                                                                   □ However, if the interaction 
                                                                      depends on the energy,
                                                                      the compositeness from 
                                                                      the scattering amplitude
                                                                      deviates from unity.
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2.  Wave functions from amplitude

0s, from Scatt. Amp.
X = 1
(v1 = 0)

Hernandez and Mondragon (1984).



++ Example: Stable bound state ++
   ■ We define the compositeness X as the norm of the wave function:

   --- In the following, we calculate X from the scattering amplitude.

     □ The compositeness is unity for energy independent interaction.

                                                                  ■ Consistent with the norm
                                                                     with energy-dep. interaction.
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2.  Wave functions from amplitude

0s, from Scatt. Amp.
X = 1
(v1 = 0)

Hernandez and Mondragon (1984).

Formanek, Lombard and Mares (2004);
Miyahara and Hyodo (2016).

Lines: X from Amp.
Points: X = X∂V/∂E



++ Example: Stable bound state ++
   ■ We define the compositeness X as the norm of the wave function:

   --- In the following, we calculate X from the scattering amplitude.

     □ The compositeness is unity for energy independent interaction.

                                                                  ■ Deviation of compositeness 
                                                                     from unity can be interpreted
                                                                     as a missing-channel part. 
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2.  Wave functions from amplitude

0s, from Scatt. Amp.
X = 1
(v1 = 0)

Hernandez and Mondragon (1984).

T. S. , Hyodo and Jido, PTEP 2015 063D04.

e.g.



++ Lessons from schematic models ++
   ■ We can extract the two-body wave function from the residue of the
      scattering amplitude at the pole position, both stable and unstable.

   ■ The WF from the scattering amplitude is automatically scaled.
     □ The compositeness (= norm of the two-body WF) is unity for
        a bound state in an energy independent interaction.
     □ For an energy dependent interaction, the compositeness deviates
        from unity, reflecting a missing channel contribution.

26th International Nuclear Physics Conference (INPC2016)  @  Adelaide  (Sep. 11 - 16, 2016) 14

2.  Wave functions from amplitude

Aoyama et al. (2006).

T. S., arXiv:1609.xxxx [hep-ph].



++ Wave functions for hadrons ++
   ■ By using the two-body wave function and compositeness (norm),
      we can distinguish a certain configuration of hadrons in a model.

   ■ Actually, several excited hadrons are dynamically generated
      as resonance poles in the meson-baryon degrees of freedom.

   --- In particular, the chiral unitary approach is successful !
     □ Λ(1405).     □ Ξ(1690).     □ N(1535) & N(1650).     □ ...
   --> We can evaluate X for these dynamically generated resonances.
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3.  Compositeness of DGRs

Hadronic molecules
as a bound state 

of hadrons
(cf. deuteron)

Ordinary 
hadrons

Kaiser-Siegel-Weise (’95); 
Oset-Ramos (’98);

...



++ Compositeness for Ξ(1690) ++
   ■ Compositeness X for Ξ(1690) in the chiral unitary approach.

                                                         --- Large KΣ component for Ξ(1690),
                                                              since XKΣ is almost unity
                                                              with small imaginary parts.
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3.  Compositeness of DGRs

K--Σ+

K0Λ
T. S. , PTEP 2015 091D01. !!!



++ Compositeness for Λ(1405) ++
   ■ Compositeness X for Λ(1405) in the chiral unitary approach.

     --- Large KN component 
         for (higher pole) Λ(1405),
         since XKN is almost unity with small imaginary parts.
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Hyodo and Jido (’12).

!!!

3.  Compositeness of DGRs

Ikeda, Hyodo and Weise, Phys. Lett. B706, (2011) 63;
Nucl. Phys. A881 (2012) 98.

T. S. , Hyodo and Jido, PTEP 2015, 063D04.



++ Compositeness for N(1535) and N(1650) ++
   ■ Compositeness X for N(1535) & N(1650) in chiral unitary approach.

     □ For both N* resonances, the missing-channel part Z is dominant.
     --> N(1535) and N(1650) have large components originating from 
          contributions other than πN, ηN, KΛ, and KΣ.
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T. S. T. Arai, J. Yamagata-Sekihara and S. Yasui, 
Phys. Rev. C93 (2016) 035204.

3.  Compositeness of DGRs



++ Compositeness for Δ(1232) ++
   ■ Compositeness X for Δ(1232) in chiral unitary approach.

     □ The πN compositeness XπN takes
        large real part !  But non-negligible imaginary part as well.
     --> Large πN component in the Δ(1232) resonance !?
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3.  Compositeness of DGRs

!?



   ■ We can extract the two-body WF from 
      the residue of the scattering amplitude
      at the pole position, both stable and 
      unstable states.

   ■ The WF from the scattering amplitude is automatically scaled.
     □ The compositeness (= norm of the two-body WF) is unity for
        a bound state in an energy independent interaction.
     □ For an energy dependent interaction, the compositeness deviates
        from unity, reflecting a missing channel contribution.

   ■ In the chiral unitary approach, as an effective model, we evaluate
      the compositeness of dynamically generated resonances.
     □ Λ(1405) as KN !     □ Ξ(1690) as KΣ !     □ Δ(1232) as πN !?
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Scattering
amplitude:

4.  Summary
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Thank you very much  
for your kind attention ! 
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Appendix



++ Observable and model (in)dependence ++
   ■ Here we comment on the observables and non-observables.
     □ Observables:
        Cross section. 
        Its partial-wave decomposition.
        --> On-shell Scatt. amplitude
              via the optical theorem.
        Mass of bound states.
     □ NOT observables:
        Wave function and potential. 
        Resonance pole position.
        Residue at pole.
        Off-shell amplitude.
   --> Since the residue of the amplitude at the resonance pole is NOT
        observable, the wave function and its norm = compositeness are 
        also not observable and model dependent.
   --- Exception: Compositeness for near-threshold poles.
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observables

Not observables

Appendix



++ Observable and model (in)dependence ++
   ■ Special case: Compositeness for near-threshold poles.
  --- Compositeness can be 
       expressed with threshold
       parameters such as scattering
       length and effective range.
     □ Deuteron.
                Weinberg (’65).
     □ f0(980) and a0(980).
               Baru et al. (’04), 
               Kamiya-Hyodo (’16); arXiv:1607.01899.
     □ Λ(1405).
               Kamiya-Hyodo (’16); arXiv:1607.01899.
     □ ... 
   ■ General case: Compositeness are model dependent quantity.
   --> Therefore, we have to employ appropriate effective models ( V )
        to construct precise hadron-hadron scattering amplitude, in order
        to discuss the structure of hadronic molecule candidates !
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