Two-body Wave Functions, Compositeness, and the Internal Structure of Dynamically Generated Resonances

Takayasu SEKIHARA

(Japan Atomic Energy Agency)

- 1. Introduction
- 2. Two-body wave functions from scattering amplitude
- 3. Compositeness of dynamically generated resonances
- 4. Summary
- [1] <u>T. S.</u>, arXiv:1609.xxxxx [hep-ph].
- [2] <u>T. S.</u>, T. Hyodo and D. Jido, *PTEP* <u>2015</u> 063D04.
- [3] <u>T. S.</u>, *PTEP* <u>2015</u> 091D01 [Letters].
- [4] <u>T. S.</u>, T. Arai, J. Yamagata-Sekihara and S. Yasui, *Phys. Rev.* <u>C93</u> (2016) 035204.

++ Exotic hadrons and their structure ++

Exotic hadrons --- not same quark component as ordinary hadrons

= not qqq nor $q\overline{q}$.

Penta-quarks

Tetra-quarks Hybrids

<u>ds</u> <u>Glu</u>

<u>Glueballs</u>

Hadronic molecules

 Actually <u>some hadrons cannot be</u> <u>described by the quark model</u>.
 <u>Do exotic hadrons really exist ?</u>

 Hadronic molecules should be unique, because they are composed of hadrons themselves, which are color singlet states.
 --> Large spatial size, compositeness,
 26th International Nuclear Physics Conference (INPC2016) @ Adelaide (Sep. 11 - 16, 2016)

++ Hadronic molecules and quantum mechanics ++

An example of hadronic molecule: <u>deuteron</u>.

Deuteron is a proton-neutron bound state. <-- Who proved this ?
 Weinberg proved this by using general wave equations in quantum mechanics in the weak binding limit (B_E << E_{typical}). Weinberg (1965).
 Introduce field renormalization constant Z: Z ≡ ⟨B|B₀⟩⟨B₀|B⟩
 Since Component | B₀ > in the total wave function | B >.
 a = 2(1-Z)/(2-Z)R + O(m_π⁻¹), r_e = -Z/(1-Z)R + O(m_π⁻¹), R ≡ 1/(√2μB) = 4.318 fm

 $a = 5.419 \pm 0.007 \text{ fm}, \quad r_e = 1.7513 \pm 0.008 \text{ fm}$ --> Consistent with $Z \approx 0$!

++ Hadronic molecules and quantum mechanics ++

An example of hadronic molecule: <u>deuteron</u>.

Lesson: In a similar manner, we can study the structure of general hadronic molecules.

---- We can use <u>quantum mechanics</u> to investigate them: Two-body wave function, its norm = compositeness, scattering amplitude, ...

<--> In contrast, for hadrons of other configurations, we have to treat color multiplet states explicitly and appropriately.

++ How to clarify their structure ? ++

- How can we <u>use quantum mechanics</u> to clarify the structure of hadronic molecule candidates ?
- We evaluate the wave function of hadron-hadron composite contribution. ---- cf. Wave function for relative motion of two nucleons inside deuteron.

- How to evaluate the wave function ? <-- We employ a fact that the two-body wave function appears
 - in the residue of the scattering amplitude of the two particles at the resonance pole.
 - (q) $\Psi = \tilde{\psi}(q) = \frac{\gamma(q)}{E_{\text{pole}} \mathcal{E}(q)}$ $X \equiv \int \frac{d^3q}{(2\pi)^3} \left[\tilde{\psi}(\mathbf{q})\right]^2$ The WF and compositeness (= norm) are automatically scaled.

$$T(E; \mathbf{q}', \mathbf{q}) = \langle \mathbf{q}' | \hat{T}(E) | \mathbf{q} \rangle \approx \frac{\gamma(q')\gamma(q)}{E - E_{\text{pole}}}$$

++ How to calculate the wave function ++
 There are several approaches to calculate the wave function.
 Ex.) A bound state in a NR single-channel problem.
 Usual approach: Solve the Schrödinger equation.

 $\hat{H}|\Psi
angle = (\hat{H}_0 + \hat{V})|\Psi
angle = E_{
m pole}|\Psi
angle$

---- Wave function in coordinate / momentum space:

 $\langle {f r} | \Psi
angle = \psi(r) \qquad \langle {f q} | \Psi
angle = ilde{\psi}(q)$

 $\begin{bmatrix} M_{\rm th} - \frac{\nabla^2}{2\mu} + V(r) \end{bmatrix} \psi(r) = E_{\rm pole}\psi(r)$ $\begin{array}{c} --- \mid q > \text{is an eigenstate of} \\ \hline \text{free Hamiltonian } H_0: \\ \hline \hat{H}_0 \mid \mathbf{q} \rangle = \mathcal{E}(q) \mid \mathbf{q} \rangle \\ \hline \mathcal{E}(q) = M_{\rm th} + \frac{q^2}{2\mu} \end{array}$

--> After solving the Schrödinger equation, we have to normalize the wave function by hand.

$$\int d^3 r \left[\psi(r)\right]^2 = 1 \qquad \text{or} \qquad \int \frac{d^3 q}{(2\pi)^3} \left[\tilde{\psi}(q)\right]^2 = 1 \qquad \text{<--} \frac{\text{We require !}}{|\Psi|^2}$$

++ How to calculate the wave function ++
 There are several approaches to calculate the wave function.
 Ex.) A bound state in a NR single-channel problem.
 Our approach: Solve the Lippmann-Schwinger equation at the pole position of the bound state.

$$\hat{T}(E) = \hat{V} + \hat{V} \frac{1}{E - \hat{H}_0} \hat{T} = \hat{V} + \hat{V} \frac{1}{E - \hat{H}} \hat{V} \qquad T(E; \mathbf{q}', \mathbf{q}) = \langle \mathbf{q}' | \hat{T}(E) | \mathbf{q} \rangle$$

--- Near the resonance pole position E_{pole} , amplitude is dominated by the pole term in the expansion by the eigenstates of H as

$$\langle \mathbf{q}' | \hat{T}(E) | \mathbf{q} \rangle \approx \langle \mathbf{q}' | \hat{V} | \Psi \rangle \frac{1}{E - E_{\text{pole}}} \langle \tilde{\Psi} | \hat{V} | \mathbf{q} \rangle$$

--- The residue of the amplitude at the pole position has information on the wave function ! $\langle \mathbf{q}|\hat{V}|\Psi \rangle = \langle \mathbf{q}|(\hat{H} - \hat{H}_0)|\Psi \rangle = [E_{\text{pole}} - \mathcal{E}(q)]\tilde{\psi}(q)$ $\langle \tilde{\Psi}|\hat{V}|\mathbf{q} \rangle = [E_{\text{pole}} - \mathcal{E}(q)]\tilde{\psi}(q)$ $\mathcal{E}(q) = M_{\text{th}} + \frac{q^2}{2\mu}$

26th International Nuclear Physics Conference (INPC2016) @ Adelaide (Sep. 11 - 16, 2016)

7

 $|\Psi\rangle, |\mathbf{q}_{\mathrm{full}}\rangle, ... | \langle \tilde{\Psi}|, \langle \mathbf{q}_{\mathrm{full}}|, ...$

++ How to calculate the wave function ++ There are several approaches to calculate the wave function. Ex.) A bound state in a NR single-channel problem. Our approach: Solve the Lippmann-Schwinger equation at the pole position of the bound state. --- The wave function can be extracted from the residue of the amplitude at the pole position: $T(E; \mathbf{q}', \mathbf{q}) = \langle \mathbf{q}' | \hat{T}(E) | \mathbf{q} \rangle \approx \frac{\gamma(q')\gamma(q)}{E - E_{\text{pole}}} \overset{\text{<-- Off-shell Amp.}}{| \gamma(q) \equiv \langle \mathbf{q} | \hat{V} | \Psi \rangle} = [E_{\text{pole}} - \mathcal{E}(q)] \tilde{\psi}(q)$

--> Because the scattering amplitude cannot be freely scaled due to the optical theorem, the wave function from the residue of the amplitude is automatically scaled as well !

If purely molecule -->

$$\int rac{d^3 q}{(2\pi)^3} \left[rac{\gamma(q)}{E_{
m pole}-{\cal E}(q)}
ight]^2 = 1$$

<-- We obtain !

Containt: E. Hernandez and A. Mondragon, Phys. Rev. C29 (1984) 722.

--> Therefore, from hadron-hadron scattering amplitudes with resonance poles, we can calculate their two-body wave function.

---- Without normalizing by hand !

++ Example: Stable bound state ++

• We define the compositeness X as the norm of the wave function:

$$X \equiv \int \frac{d^3 q}{(2\pi)^3} \langle \tilde{\Psi} | \mathbf{q} \rangle \langle \mathbf{q} | \Psi \rangle = \int_0^\infty dq \, \mathcal{P}(q) \left[\left| \mathcal{P}(q) = \frac{4\pi q^2}{(2\pi)^3} \left[\frac{\gamma(q)}{E_{\text{pole}} - \mathcal{E}(q)} \right]^2 \right] \right]$$

--- In the following, we <u>calculate X from the scattering amplitude</u>.

The compositeness is unity for energy independent interaction. Hernandez and Mondragon (1984).

Haron

11

++ Example: Stable bound state ++

We define the compositenes

++ Example: Stable bound state ++

We define the compositenes

$$X\equiv\intrac{d^3q}{(2\pi)^3}\langle ilde{\Psi}|{f q}
angle\langle{f q}|\Psi
angle=,$$

--- In the following, we calcula

[MeV]

q

 Deviation of compositeness from unity can be interpreted as a missing-channel part. T. S., Hyodo and Jido, PTEP 2015 063D04.

26th International Nuclear Physics Conference (INPC2016) @ Adelaide (Sep. 11 - 16, 2016)

400

++ Lessons from schematic models ++

 We can extract the two-body wave function from the residue of the scattering amplitude at the pole position, both stable and unstable.

- The WF from the scattering amplitude is <u>automatically scaled</u>.
 <u>The compositeness</u> (= norm of the two-body WF) is <u>unity</u> for a bound state in <u>an energy independent interaction</u>.
 - For an energy dependent interaction, the compositeness deviates from unity, reflecting <u>a missing channel contribution</u>.

J AEA

++ Compositeness for $\Xi(1690)$ ++

• Compositeness X for $\Xi(1690)$ in the chiral unitary approach.

Haron

++ Compositeness for $\Lambda(1405)$ ++

• Compositeness X for $\Lambda(1405)$ in the chiral unitary approach.

---- Large KN component for (higher pole) $\Lambda(1405)$, since X_{KN} is almost unity with small imaginary parts.

JAEA Hidron

26th International Nuclear Physics Conference (INPC2016) @ Adelaide (Sep. 11 - 16, 2016)

T.S., Hyodo and Jido, *PTEP* 2015, 063D04.

++ Compositeness for N(1535) and N(1650) ++ Compositeness X for N(1535) & N(1650) in chiral unitary approach.

For both N* resonances, the missing-channel part Z is dominant.
 -> N(1535) and N(1650) have large components originating from contributions other than πN, ηN, KA, and KΣ.

++ Compositeness for $\Delta(1232)$ ++

• **Compositeness** *X* for $\Delta(1232)$ in chiral unitary approach.

 <u>The πN compositeness X_{πN} takes</u> <u>large real part !</u> But non-negligible imaginary part as well.
 Large πN component in the Δ(1232) resonance !?

4. Summary

- The WF from the scattering amplitude is <u>automatically scaled</u>.
 <u>The compositeness</u> (= norm of the two-body WF) is <u>unity</u> for a bound state in <u>an energy independent interaction</u>.
 - For an energy dependent interaction, the compositeness deviates from unity, reflecting <u>a missing channel contribution</u>.
- In the chiral unitary approach, as an effective model, we evaluate the compositeness of dynamically generated resonances.
 Δ(1405) as KN! □ Ξ(1690) as KΣ! □ Δ(1232) as πN!?

Thank you very much for your kind attention !

Appendix

++ Observable and model (in)dependence ++

Here we comment on the observables and non-observables.

- Observables: Cross section. Its partial-wave decomposition.
 --> On-shell Scatt. amplitude via the optical theorem.
 Mass of bound states.
 NOT observables: Wave function and potential. Resonance pole position.
 - Residue at pole. Off-shell amplitude.

 --> Since the residue of the amplitude at the resonance pole is NOT observable, the wave function and its norm = compositeness are also not observable and model dependent.
 --- Exception: Compositeness for near-threshold poles.

Appendix

General case: Compositeness are model dependent quantity.
--> Therefore, we have to employ <u>appropriate effective models</u> (V) to construct <u>precise</u> hadron-hadron scattering amplitude, in order to discuss the structure of hadronic molecule candidates !

Two-body Wave Functions, Compositeness, and the Internal Structure of Dynamically Generated Resonances

Takayasu SEKIHARA

(Japan Atomic Energy Agency)

in collaboration with

Daisuke JIDO (Tokyo Metropolitan Univ.),

Tetsuo HYODO (Yukawa Inst., Kyoto Univ.)

Sigehiro YASUI (Tokyo Inst. Tech.), and

Junko YAMAGATA-SEKIHARA (Nat. Inst. Tech., Oshima Coll.)

