The Latest Results from the OLYMPUS Experiment

Axel Schmidt

MIT

September 12, 2016

The OLYMPUS Experiment

The OLYMPUS Experiment

Elastic scattering cross section ratio:

$$e^+p \longrightarrow e^+p \ e^-p \longrightarrow e^-p$$

1 Motivation:

 \blacksquare Why the discrepancy calls for a measurement of $\sigma_{e^+p}/\sigma_{e^-p}$

2 Experiment:

How OLYMPUS worked

3 Results:

- What other experiments have found
- What impact OLYMPUS can have

Theory

Polarized measurements disagree with unpolarized cross section measurements.

Polarized measurements disagree with unpolarized cross section measurements.

 $\sigma_{e^+p}/\sigma_{e^-p}$ is sensitive to two-photon exchange.

$$\mathcal{M} = + + \mathcal{O}(\alpha^3)$$

 $\sigma_{e^+p}/\sigma_{e^-p}$ is sensitive to two-photon exchange.

 $\sigma_{e^+p}/\sigma_{e^-p}$ is sensitive to two-photon exchange.

$$\frac{\sigma_{e^+p}}{\sigma_{e^-p}} \approx 1 + \frac{4\text{Re}\{\mathcal{M}_{2\gamma}\mathcal{M}_{1\gamma}\}}{|\mathcal{M}_{1\gamma}|^2}$$

A few percent effect is large enough to resolve the discrepancy.

A few percent effect is large enough to resolve the discrepancy.

2. The Experiment How OLYMPUS worked

- Alternating e^- , e^+ beams
- Hydrogen gas target
- Large acceptance spectrometer
- Finished data collection in early 2013

We detected the lepton and proton in coincidence.

We detected the lepton and proton in coincidence.

We detected the lepton and proton in coincidence.

We used a toroidal spectrometer.

We used a toroidal spectrometer.

We had redundant luminosity monitors.

We had redundant luminosity monitors.

We had redundant luminosity monitors.

3. The Results

What other experiments have found, what impact OLYMPUS can have

OLYMPUS

CLAS VEPP-3

3. The Results

What other experiments have found, what impact OLYMPUS can have

3. The Results

What other experiments have found, what impact OLYMPUS can have

All three probe the relevant, low ϵ , high Q^2 phase space.

 ϵ

CLAS results

VEPP-3 results

Projected OLYMPUS precision

• $\sigma_{e^+p}/\sigma_{e^-p}$ will say if two-photon exchange causes the form factor discrepancy.

- $\sigma_{e^+p}/\sigma_{e^-p}$ will say if two-photon exchange causes the form factor discrepancy.
- OLYMPUS experiment
 - Alternating e^+ , e^- beams
 - Toroidal spectrometer
 - Redundant lumi monitors

- $\sigma_{e^+p}/\sigma_{e^-p}$ will say if two-photon exchange causes the form factor discrepancy.
- OLYMPUS experiment
 - Alternating e^+ , e^- beams
 - Toroidal spectrometer
 - Redundant lumi monitors
- OLYMPUS results will strongly constrain two-photon exchange.

- $\sigma_{e^+p}/\sigma_{e^-p}$ will say if two-photon exchange causes the form factor discrepancy.
- OLYMPUS experiment
 - Alternating e^+ , e^- beams
 - Toroidal spectrometer
 - Redundant lumi monitors
- OLYMPUS results will strongly constrain two-photon exchange.

Expect results very soon!

Back-up slides

Bernauer prediction for all three experiments

Standard radiative corrections neglect hard two-photon exchange.

The Møller/Bhabha analysis was not successful.

The Møller and Bhabha cross sections are quite different.

We designed a better method using multi-interaction events.

The multi-interaction method is accurate to within 0.3%.

The multi-interaction method is accurate to within 0.3%.

