International Nuclear Physics Conference 2016

Collective neutrino flavor oscillations and application to supernova nucleosynthesis

H. Sasaki^{1,2}, T. Kajino^{1,2}, T. Takiwaki², J. Hidaka³, T. Maruyama⁴, Y. Pehlivan⁵, and A. B. Balantekin⁶

1 Department of Astronomy, The University of Tokyo

2 National Astronomical Observatory of Japan

- 3 Mechanical Engineering Department, Meisei University
- 4 College of Bioresource Sciences, Nihon University
- 5 Mimar Sinan Fine Arts University
- 6 Department of Physics, University of Wisconsin, Madison

Neutrino oscillations

Transition from a flavor state to another flavor state

$$\nu_{\alpha} \longleftrightarrow \nu_{\beta}$$
 $\alpha, \beta = e, \mu, \tau$

Flavor eigenstates are mixing of energy eigenstates in vacuum

=Mass eigenstates

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}_{\text{flavor}} = U \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}_{\text{mass}}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{bmatrix} \begin{pmatrix} \cos\theta_{13} & 0 & \sin\theta_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -\sin\theta_{13} e^{i\delta} & 0 & \cos\theta_{13} \end{bmatrix} \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

This matrix causes neutrino oscillations PMNS matrix

Purpose of our Research

Collective oscillations will play significant roles in supernova nucleosynthesis

 \rightarrow Study collective oscillations and their effects on nucleosynthesis

What we did

→ Calcultate 3 flavor collective oscillations and apply these results to network calculation in both mass hierarchy

$$\Delta m_{32}^2 = m_3^2 - m_2^2 \qquad \qquad \Delta m_{32}^2 > 0 \dots \text{ Normal mass hierarchy} \\ \Delta m_{32}^2 < 0 \dots \text{ Inverted mass hierarchy}$$

Model & Assumption

Our Model

• 15 M_{\odot} progenitor (model "s15s7b2"), 1.2 s after bounce

S.E. Woosley and T.A.Weaver, 1995, ApJS, 101, 181

- Spherical symmetric and steady state
- •Neutrino sphere: R = 20 km

Assumption

- Mixing parameters (θ_{ij} , Δm_{ij}^2) from PDG
- Mean field v-v forward scattering term $H_{\nu\nu}$ G. Sigl and G. Rafflet, 1993, NP B406, 423

Formalism

G. Sigl and G. Rafflet, 1993, Nucl. Phys. B 406, 423

We calculate the evolution of 3 x 3 density matrix

$$\rho(t, \mathbf{r}, \mathbf{p}) = \overline{\rho}(t, \mathbf{r}, \mathbf{p})$$

 $\langle a_{j}^{\dagger}(\mathbf{p})a_{i}(\mathbf{p}')\rangle = (2\pi)^{3}\delta^{(3)}(\mathbf{p} - \mathbf{p}')(\rho_{\mathbf{p}})_{ij} \quad a_{i}(\mathbf{p}') \text{ annihilation operator of } \mathbf{v}_{i}$ $\langle b_{i}^{\dagger}(\mathbf{p})b_{j}(\mathbf{p}')\rangle = (2\pi)^{3}\delta^{(3)}(\mathbf{p} - \mathbf{p}')(\overline{\rho_{\mathbf{p}}})_{ij} \quad b_{j}(\mathbf{p}') \text{ annihilation operator of } \mathbf{\bar{v}}_{j}$ $\text{Ensemble average of Heisenberg equation of } a_{j}^{\dagger}(\mathbf{p})a_{i}(\mathbf{p}') \quad b_{i}^{\dagger}(\mathbf{p})b_{j}(\mathbf{p}')$ $\dot{\rho} = -i\left[H,\rho\right] \quad \dot{\overline{\rho}} = -i\left[H,\overline{\rho}\right]$

We solve these equations !!

 $H = H_{Vacuum} + H_{MSW} + H_{\nu\nu}$ Hamiltonian in flavor space Mean field v-v forward scattering term

Evolution of $\overline{\rho}_{ee}$ ($\overline{\nu}_{e}$ probability)

Mass fraction of nucleus

νp process and onset of oscillations

Final mass fraction

Mass fraction

Future prospects

- Choose other trajectories and study oscillation effects on vp process elements
- Interpret oscillation phenomena analytically
- Beyond mean field

Y. Pehlivan, et al., Phys. Rev. D, 84, 065008, 2011

Summary

It seems that neutrino oscillations especially collective oscillations will play significant roles towards nucleosynthesis in core collapse supernovae

3 flavor collective oscillations were calculated and applied to the explosive nucleosynthesis.

In normal hierarchy, much free neutrons are created by collective oscillations before vp process, so abundance of p-nucleus are enhanced.

In inverted hierarchy, free neutrons are created by MSW effects but after vp process, so the effect of oscillations are negligible.