Search for double beta decay of ¹⁰⁶Cd with the TGV-2 spectrometer

N.I. Rukhadze (JINR, Dubna) on behalf of TGV collaboration

JINR Dubna, Russia IEAP, CTU Prague, Czech Republic CU Bratislava, Slovakia LSM Modane, France

INPC 2016, Adelaide, 11-16 September 2016

SEARCH FOR DOUBLE BETA DECAY

•At present $2\nu 2\beta$ decay was detected in 11 nuclei:

⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ⁹⁶Zr, ¹⁰⁰Mo, ¹¹⁶Cd, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd, ²³⁸U

"Positive" results in search for 2vEC/EC decay

•2vEC/EC in ¹³⁰Ba was detected in geochemical experiment (A.P.Meshik et al., Phys. Rev. C **64**, 2001, 035205).

•2vEC/EC in ⁷⁸Kr (indication) (Yu.M.Gavrilyuk et al., Phys. Rev. C **87**, 2013, 035501).

Experimental signature : 4γ **511 (+** γ **for e.s.)**

OvEC/EC DECAY to the ground state $2e_b^- + (A,Z) \rightarrow (A,Z-2) + 2X + (\gamma_{brem}, 2\gamma, e^+e^-, e_{-int})$ $E\gamma_{,..} = \Delta M - \epsilon_{e1} - \epsilon_{e2}$ Suppression factor is ~ 10⁴ (in comparison with EC β +(0 ν)) – M. Doi and T. Kotani, Prog. Theor. Phys. 89 (1993)139.

0vEC/EC Resonance Transitions $(A,Z) \rightarrow (A,Z-2)^{*HH^{2}}$

J. Bernabeu, A. DeRujula, C. Jarlskog, Nucl. Phys. B 223, 15 (1983)

Enhancement factor on the level of 10⁴-10⁶ may be obtained for **Q-Q'res** < 1 keV Z. Sujkowski, S. Wycech, Phys. Rev. C 70 (2004) 052501.

Experiment TGV-2 Telescope Germanium Vertical

Laboratoire Souterrain de Modane, France

Phase I ~ 10g (12 samples) of 106 Cd (75%), ~ 3.2 g (4 samples) of Cd-nat. (~ 4.25 x 10²² atoms of 106 Cd) T= 8687h (Feb.2005 – Feb.2006)

Phase II ~ 13.6 g (16 samples) of ^{106}Cd (75%) (~ 5.8 x 10²² atoms of ^{106}Cd) T = 12900h (Dec.2007 – July 2009)

Background I no samples (Aug.2009 – Mar.2010)

Background II 16 samples of Cd.-nat (April 2010 - Nov. 2013)

Phase III ~ 23.2 g (16 samples) of 106 Cd (99.57%) (~ 1.3 x 10²³ atoms of 106 Cd) T = 11000h +... (Feb.2014 –) in progress

Detectors and foils of TGV-2

16 circle foils: thickness = $70\pm10 \text{ mg/cm}^2$ diameter = 52 mmmass = 23.166 genrichment= 99.57%.

PASSIVE SHIELDING

Detector part of TGV-2

Laboratoire Souterrain de Modane

Fréjus Tunnel at the French-Italian border Depth - 1800 m of rock (4800 mwe)

Depth - 1800 m of rock (4800 mwe) Muons flux - 4 muons / m² x day⁻¹ (2x10⁶ reduction factor) Neutrons flux - 3000 fast neutrons (>1MeV) per m² and per day (1000 reduction factor)

Suppression of microphonic noise

Phase II, 13.6g of ¹⁰⁶Cd, T=12900h

T=11000 h

Single events

Total energy deposited in event with multiplicity=1

KK-spectra in the ROI (19-22 keV)

2D method

T_{1/2}(2vKK) >4.7×10²⁰y (90%CL)

KK analysis in 2D-method

(at 90% CL) Phase II Ovec/ec 2717.6 keV >1.6 × 10²⁰ 2741 keV >1.8 × 10²⁰ 2vEC/EC (0+→0+,g.s.) $-T_{1/2} \ge 4.2 \times 10^{20} \text{ y}$ $(0+\rightarrow 2+_1,512)$ $-T_{1/2} \ge 1.2 \times 10^{20} \text{ y}$ $(0+\rightarrow0+_1,1334)$ $-T_{1/2} \ge 1.0 \times 10^{20} \text{ y}$ 2vβ+/EC (0+→0+,g.s.) $-T_{1/2} \ge 1.1 \times 10^{20} \text{ y}$ **(0+→2+**₁,512) $-T_{1/2} \ge 1.1 \times 10^{20} \text{ y}$ $(0+\rightarrow0+_1,1334)$ $-T_{1/2} \ge 1.6 \times 10^{20} \text{ y}$ 2vβ⁺β⁺ (0+→0+,g.s.) $-T_{1/2} \ge 1.4 \times 10^{20} \text{ y}$ $(0+\rightarrow 2+_{1},512)$ - T_{1/2} ≥ 1.7 x 10²⁰ y

TGV-2 limits on double beta decay of Cd-106

- 1.6 x 10²⁰ y 1.9 x 10²⁰ y
- 1.3 x 10²⁰ y 1.9 x 10²⁰ y
- 1.7 x 10²⁰ y 1 3 x 10²⁰ y
- 4.7 x 10²⁰ y 8.5 x 10¹⁹ y 6.0 x 10¹⁹ y
- Phase III (prelim.) >1.4 × 10²⁰ y (395 h) >0.9 × 10²⁰ y (395 h)

Thank you for attention